Trends in Molecular Medicine (TRENDS MOL MED )

Publisher: Elsevier

Description

Trends in Molecular Medicine's objective is to facilitate communication between groups of highly trained professionals with distinct backgrounds and skills, whose common goals are to understand and explain the molecular basis of disease with a view to new clinical practice. Trends in Molecular Medicine is a resource for students and professionals alike, who have information needs that transcend the traditional clinical or scientific categorisation. Trends in Molecular Medicine includes review articles on the genetic basis of disease, but 'molecular' does not only mean DNA. The diagnostic role of genetic processes is clear, but major benefits in health and disease are also provided by other molecules: enzymes, antibiotics, hormones, metals, carbohydrates, lipids, vitamins, synthetic organic and inorganic polymers. Such benefits are discussed and evaluated by Trends in Molecular Medicine. Furthermore 'Medicine' involves a vital societal element; molecular intervention raises controversial ethical, legal and financial issues. All these issues are addressed in Trends in Molecular Medicine in a style that builds on 25 years' experience of publishing the Trends Journals.

Impact factor 10.11

  • Hide impact factor history
     
    Impact factor
  • 5-year impact
    10.14
  • Cited half-life
    5.40
  • Immediacy index
    1.49
  • Eigenfactor
    0.02
  • Article influence
    3.84
  • Website
    Trends in Molecular Medicine website
  • Other titles
    Trends in molecular medicine (Online)
  • ISSN
    1471-4914
  • OCLC
    45949985
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Elsevier

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-print allowed on any website or open access repository
    • Voluntary deposit by author of authors post-print allowed on authors' personal website, arXiv.org or institutions open scholarly website including Institutional Repository, without embargo, where there is not a policy or mandate
    • Deposit due to Funding Body, Institutional and Governmental policy or mandate only allowed where separate agreement between repository and the publisher exists.
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months .
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PubMed Central after 12 months
    • Publisher last contacted on 18/10/2013
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sophistication in DNA and RNA sequencing technology is unraveling the tremendous genetic and molecular complexity of human cancer. However, the rate at which this knowledge is being translated into patient care is too slow. To this end, we have designed and implemented a new translational platform, 'The Co-Clinical Trial Project', where data obtained in genetically engineered mouse models (GEMMs) of human cancer treated with protocols identical to those of ongoing clinical trials or with therapies already established in patients serve to rapidly: (i) stratify patients in terms of response and resistance on the basis of genetic and molecular criteria; (ii) identify mechanisms responsible for tumor resistance; and (iii) evaluate the effectiveness of drug combinations to overcome such resistance based on mechanistic understanding. Copyright © 2014. Published by Elsevier Ltd.
    Trends in Molecular Medicine 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small intestine bacterial overgrowth (SIBO) occurs when colonic quantities of commensal bacteria are present in the small bowel. SIBO is associated with conditions of disrupted GI motility leading to stasis of luminal contents. Recent data show that SIBO is also found in children living in unsanitary conditions that do not have access to clean water. SIBO leads to impaired micronutrient absorption and increased GI permeability, both of which may contribute to growth stunting in children. SIBO also disrupts mucosal immunity and has been implicated in oral vaccination underperformance and the development of celiac disease. SIBO in the setting of the impoverished human habitat may be an under recognized cause of pediatric morbidity and mortality in the developing world.
    Trends in Molecular Medicine 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The central role of vascular endothelial growth factor (VEGF) signaling in regulating normal vascular development and pathological angiogenesis has been documented in multiple studies. Ocular anti-VEGF therapy is highly effective for treating a subset of patients with blinding eye disorders such as diabetic retinopathy and neovascular age-related macular degeneration (AMD). However, chronic VEGF suppression can lead to adverse effects associated with poor visual outcomes due to the loss of prosurvival and neurotrophic capacities of VEGF. In this review, we discuss emerging evidence for immune-related mechanisms that regulate ocular angiogenesis in a VEGF-independent manner. These novel molecular and cellular pathways may provide potential therapeutic avenues for a multitarget strategy, preserving the neuroprotective functions of VEGF in those patients whose disease is unresponsive to VEGF neutralization. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Trends in Molecular Medicine 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: miRNAs are small noncoding RNAs known to post-transcriptionally regulate gene expression. miRNAs are expressed in the heart where they regulate multiple pathophysiological processes. The discovery of stable cardiac miRNAs in the bloodstream has also motivated the investigation of their potential as biomarkers. This review gathers the current knowledge on the use of miRNAs as novel biomarkers to improve risk stratification, diagnosis, and prognosis of patients with myocardial infarction. In the rapidly evolving era of biomarkers, the potential of miRNAs as promising tools to move personalized medicine a step forward is discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Trends in Molecular Medicine 11/2014; 20(12).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The PD-1 receptor and ligands PD-L1 and PD-L2, members of the CD28 and B7 families, play critical roles in T cell coinhibition and exhaustion. Overexpression of PD-L1 and PD-1 on tumor cells and tumor-infiltrating lymphocytes, respectively, correlates with poor disease outcome in some human cancers. Monoclonal antibodies (mAbs) blockading the PD-1/PD-L1 pathway have been developed for cancer immunotherapy via enhancing T cell functions. Clinical trials with mAbs to PD-1 and PD-L1 have shown impressive response rates in patients, particularly for melanoma, non-small-cell lung cancer, renal cell carcinoma, and bladder cancer. Further studies are needed to dissect mechanisms of variable response rate, to identify biomarkers for clinical response, to develop small molecule inhibitors, and to combine with other therapies
    Trends in Molecular Medicine 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The most commonly used therapies for cancer involve delivering high doses of radiation or toxic chemicals to the patient that also cause substantial damage to normal tissue. To overcome this, researchers have recently resorted to a basic biological concept called 'synthetic lethality' (SL) that takes advantage of interactions between gene pairs. The identification of SL interactions is of considerable therapeutic interest because if a particular gene is SL with a tumor-causing mutation, then the targeting that gene carries therapeutic advantages. Mapping these interactions in the context of human cancer cells could hold the key to effective, targeted cancer treatments. In this review, we cover the recent advances that aim to identify these SL interactions using unbiased genetic screens. Copyright © 2014 Elsevier Ltd. All rights reserved.
    Trends in Molecular Medicine 10/2014; 20(12).
  • Trends in Molecular Medicine 10/2014; 20(11).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The human hair follicle (HF) is an exquisitely hormone-sensitive mini-organ that undergoes cyclical remodeling. It is also a source and target of numerous neurohormones, neuropeptides, and neurotransmitters that regulate HF growth, pigmentation, remodeling, immune status, stem cell biology, and energy metabolism. Indeed, organ-cultured human scalp HFs can be utilized to identify ‘novel’ clinically relevant functions of major neuromediators. This is pertinently illustrated by the discoveries of: (i) thyrotropin-releasing hormone (TRH) as a hair growth and pigmentation stimulator; (ii) TRH and thyrotropin (TSH) as potent promoters of mitochondrial activity and regulators of keratin expression; and (iii) prolactin as an epithelial stem cell modulator. Thus, HF neuroendocrinology affords insights well beyond hair growth and dermatoendocrinology, uncovering new translationally relevant neuroendocrinology principles and novel therapeutic targets.
    Trends in Molecular Medicine 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acute respiratory infection (ARI) is a common diagnosis in outpatient and emergent care settings. Currently available diagnostics are limited, creating uncertainty in the use of antibacterial, antiviral, or supportive care. Up to 72% of ambulatory care patients with ARI are treated with an antibacterial, despite only a small fraction actually needing one. Antibiotic overuse is not restricted to ambulatory care: ARI accounts for approximately 5 million emergency department (ED) visits annually in the USA, where 52–61% of such patients receive antibiotics. Thus, an accurate test for the presence or absence of viral or bacterial infection is needed. In this review, we focus on recent research showing that the host-response (genomic, proteomic, or miRNA) can accomplish this task.
    Trends in Molecular Medicine 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neisseria meningitidis is an extracellular pathogen, which, once in the bloodstream, has the ability to form microcolonies on the apical surface of endothelia. Pathogen interaction with microvessels is mediated by bacterial type IV pili and two receptors on endothelial cells: CD147 and the β2-adrenoceptor. CD147 facilitates the adhesion of diplococci to the endothelium, whereas the β2-adrenoceptor facilitates cell signaling, and crossing of the blood–brain barrier. In this review, we discuss how meningococcal interaction with endothelial cells is responsible for the specific clinical features of invasive meningococcal infection such as meningitis, and a peripheral thrombotic/vascular leakage syndrome possibly leading to purpura fulminans.
    Trends in Molecular Medicine 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The inhibitor of apoptosis (IAP) family members, notably cIAP1, cIAP2, and XIAP, are critical and universal regulators of tumor necrosis factor (TNF) mediated survival, inflammatory, and death signaling pathways. Furthermore, IAPs mediate the signaling of nucleotide-binding oligomerization domain (NOD)1/NOD2 and other intracellular NOD-like receptors in response to bacterial pathogens. These pathways are important to the pathogenesis and treatment of inflammatory bowel disease (IBD). Inactivating mutations in the X-chromosome-linked IAP (XIAP) gene causes an immunodeficiency syndrome, X-linked lymphoproliferative disease type 2 (XLP2), in which 20% of patients develop severe intestinal inflammation. In addition, 4% of males with early-onset IBD also have inactivating mutations in XIAP. Therefore, the IAPs play a greater role in gut homeostasis, immunity and IBD development than previously suspected, and may have therapeutic potential.
    Trends in Molecular Medicine 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The p16INK4a cell cycle regulator is one of the best ageing biomarkers because it is suppressed in early embryogenesis and progressively induced during ageing. p16INK4a plays a crucial role in key cell fate decisions which contribute to ageing, such as cellular senescence and stem cell dynamics. Detailed examination of the pathways regulating p16INK4a expression has revealed an overlap with those regulating early development. We present the hypothesis that ageing might be primarily driven by gradual functional decay of developmental pathways. To support this, we summarise the role of p16INK4a in ageing and our current knowledge on p16INK4a regulation. The developmental decay hypothesis implies that the much-evidenced damage associated with all aspects of ageing might be secondary to such decay.
    Trends in Molecular Medicine 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Codon optimization describes gene engineering approaches that use synonymous codon changes to increase protein production. Applications for codon optimization include recombinant protein drugs and nucleic acid therapies, including gene therapy, mRNA therapy, and DNA/RNA vaccines. However, recent reports indicate that codon optimization can affect protein conformation and function, increase immunogenicity, and reduce efficacy. We critically review this subject, identifying additional potential hazards including some unique to nucleic acid therapies. This analysis highlights the evolved complexity of codon usage and challenges the scientific bases for codon optimization. Consequently, codon optimization may not provide the optimal strategy for increasing protein production and may decrease the safety and efficacy of biotech therapeutics. We suggest that the use of this approach is reconsidered, particularly for in vivo applications.
    Trends in Molecular Medicine 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: All cells of the immune system rely on a highly integrated and dynamic gene expression program that is controlled by both transcriptional and post-transcriptional mechanisms. Recently, non-coding RNAs, including long non-coding RNAs (lncRNAs), have emerged as important regulators of gene expression in diverse biological contexts. lncRNAs control gene expression in the nucleus by modulating transcription or via post-transcriptional mechanisms targeting the splicing, stability, or translation of mRNAs. Our knowledge of lncRNA biogenesis, their cell type-specific expression, and their versatile molecular functions is rapidly progressing in all areas of biology. We discuss here these exciting new regulators and highlight an emerging paradigm of lncRNA-mediated control of gene expression in the immune system.
    Trends in Molecular Medicine 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclin-dependent kinase (CDK)-inhibitor 1C (CDKN1C) negatively regulates cellular proliferation and it has been shown that loss-of-function mutations in the imprinted CDKN1C gene (11p15.5) are associated with the overgrowth disorder Beckwith–Wiedemann syndrome (BWS). With recent reports of gain-of-function mutations of the PCNA domain of CDKN1C in growth-retarded patients with IMAGe syndrome or Silver–Russell syndrome (SRS), its key role for growth has been confirmed. Thereby, the last gap in the spectrum of molecular alterations in 11p15.5 in growth-retardation and overgrowth syndromes could be closed. Recent functional studies explain the strict association of CDKN1C mutations with clinically opposite phenotypes and thereby contribute to our understanding of the function and regulation of the gene in particular and epigenetic regulation in general.
    Trends in Molecular Medicine 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Botulinum neurotoxin causes botulism, and the only effective antidote is the antitoxin. Botulinum neurotoxins are disulfide linked di-chain proteins encompassing a light chain Zn2+-protease that is translocated by a heavy chain channel from the synaptic vesicle lumen into the neuronal cytosol where it acts. Protease release from the channel is required for toxicity. The Thioredoxin Reductase-Thioredoxin system cleaves the interchain disulfide, and its inhibition prevents neurotoxicity, and may provide novel strategies for chemoprophylaxis and therapy.
    Trends in Molecular Medicine 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since its inception, in vitro fertilization (IVF) has pursued molecular technology to improve patient outcomes, leading to enhanced methods of embryo selection. Comprehensive chromosomal screening (CCS) is a powerful tool that decreases maternal and neonatal morbidity due to multiple gestations by allowing the transfer of fewer embryos while maintaining success rates. To optimize this genetic test, physiological principles limiting the timing and type of cells to be removed had to be realized. Molecular barriers involved in genome amplification and ensuring the accuracy and validity of the CCS platform required a multistep approach to ensure that this technology was not used prematurely. Only after ensuring that the potential for harm was minimized and benefit maximized could clinicians use this technology to improve patient care.
    Trends in Molecular Medicine 09/2014;