Proceedings of the Royal Society B: Biological Sciences Journal Impact Factor & Information

Publisher: Royal Society (Great Britain), Royal Society, The

Journal description

Proceedings B welcomes papers of high quality in any area of biological science. As a fast track journal, Proceedings B specialises in the rapid delivery of the latest research to the scientific community, normally within three months of acceptance. It is published on the 7th and 22nd of each month. Many more good manuscripts are submitted to us, than we have space to print, and we give preference to those that present significant advances of broad interest. Submission of preliminary reports, of papers that merely confirm previous findings, and of papers that are likely to interest only small groups of specialists, is not encouraged. All papers are sent to Editorial Board members for an initial assessment of their suitability, and may be returned to authors without in-depth peer-review if this assessment makes it seem unlikely that they will be accepted.

Current impact factor: 5.29

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 5.292
2012 Impact Factor 5.683
2011 Impact Factor 5.415
2010 Impact Factor 5.064
2008 Impact Factor 4.248
2007 Impact Factor 4.112
2006 Impact Factor 3.612
2005 Impact Factor 3.51
2004 Impact Factor 3.653
2003 Impact Factor 3.544
2002 Impact Factor 3.396
2001 Impact Factor 3.192
2000 Impact Factor 3.037
1999 Impact Factor 2.755
1998 Impact Factor 3.033
1997 Impact Factor 2.873

Impact factor over time

Impact factor
Year

Additional details

5-year impact 5.83
Cited half-life 8.40
Immediacy index 1.22
Eigenfactor 0.09
Article influence 2.38
Website Proceedings of the Royal Society B: Biological Sciences website
Other titles Biology letters., Proceedings., Proceedings - Royal Society. Biological sciences, Biological sciences, Proceedings of the Royal Society of London., Proceedings of the Royal Society
ISSN 1471-2954
OCLC 44150803
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Royal Society, The

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Author's pre-print on preprint servers or websites
    • Post print on author's personal website, institutional website, institutional repository or not-for-profit repository
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged with citation close to title of article
    • Must link to publisher version close to title of article
    • If funding agency rules apply, authors may post articles in PubMed Central 12 months after publication
    • Articles in all journals can be made Open Access on payment of additional charge
    • Eligible UK authors may deposit in Open Depot (after 12 months)
  • Classification
    ​ yellow

Publications in this journal

  • Cody S Clements · Mark E Hay
    [Show abstract] [Hide abstract]
    ABSTRACT: Indirect biotic effects arising from multispecies interactions can alter the structure and function of ecological communities-often in surprising ways that can vary in direction and magnitude. On Pacific coral reefs, predation by the crown-of-thorns sea star, Acanthaster planci, is associated with broad-scale losses of coral cover and increases of macroalgal cover. Macroalgal blooms increase coral-macroalgal competition and can generate further coral decline. However, using a combination of manipulative field experiments and observations, we demonstrate that macroalgae, such as Sargassum polycystum, produce associational refuges for corals and dramatically reduce their consumption by Acanthaster. Thus, as Acanthaster densities increase, macroalgae can become coral mutualists, despite being competitors that significantly suppress coral growth. Field feeding experiments revealed that the protective effects of macroalgae were strong enough to cause Acanthaster to consume low-preference corals instead of high-preference corals surrounded by macroalgae. This highlights the context-dependent nature of coral-algal interactions when consumers are common. Macroalgal creation of associational refuges from Acanthaster predation may have important implications for the structure, function and resilience of reef communities subject to an increasing number of biotic disturbances. © 2015 The Author(s).
    Proceedings of the Royal Society B: Biological Sciences 09/2015; 282(1814). DOI:10.1098/rspb.2015.0714
  • Yuya Fukano · Akira Yamawo
    [Show abstract] [Hide abstract]
    ABSTRACT: Although self-discrimination has been well documented, especially in animals, self-discrimination in plants has been identified in only a few cases, such as self-incompatibility in flowers and root discrimination. Here, we report a new form of self-discrimination in plants: discrimination by vine tendrils. We found that tendrils of the perennial vine Cayratia japonica were more likely to coil around neighbouring non-self plants than neighbouring self plants in both experimental and natural settings. The higher level of coiling around a physiologically severed self plant compared with that around a physiologically connected self plant suggested that self-discrimination was mediated by physiological coordination between the tendril and the touched plant as reported for self-discrimination in roots. The results highlight the importance of self-discrimination for plant competition not only underground, but also above-ground. © 2015 The Author(s).
    Proceedings of the Royal Society B: Biological Sciences 09/2015; 282(1814). DOI:10.1098/rspb.2015.1379
  • Alexander V Terekhov · Vincent Hayward
    [Show abstract] [Hide abstract]
    ABSTRACT: A fundamental problem faced by the brain is to estimate whether a touched object is rigidly attached to a ground reference or is movable. A simple solution to this problem would be for the brain to test whether pushing on the object with a limb is accompanied by limb displacement. The mere act of pushing excites large populations of mechanoreceptors, generating a sensory response that is only weakly sensitive to limb displacement if the movements are small, and thus can hardly be used to determine the mobility of the object. In the mechanical world, displacement or deformation of objects frequently co-occurs with microscopic fluctuations associated with the frictional sliding of surfaces in contact or with micro-failures inside an object. In this study, we provide compelling evidence that the brain relies on these microscopic mechanical events to estimate the displacement of the limb in contact with an object, and hence the mobility of the touched object. We show that when pressing with a finger on a stiff surface, fluctuations that resemble the mechanical response of granular solids provoke a sensation of limb displacement. Our findings suggest that when acting on an external object, prior knowledge about the sensory consequences of interacting with the object contributes to proprioception. © 2015 The Authors.
    Proceedings of the Royal Society B: Biological Sciences 09/2015; 282(1814). DOI:10.1098/rspb.2015.1661
  • Matthias Tschumi · Matthias Albrecht · Martin H Entling · Katja Jacot
    [Show abstract] [Hide abstract]
    ABSTRACT: Providing key resources to animals may enhance both their biodiversity and the ecosystem services they provide. We examined the performance of annual flower strips targeted at the promotion of natural pest control in winter wheat. Flower strips were experimentally sown along 10 winter wheat fields across a gradient of landscape complexity (i.e. proportion non-crop area within 750 m around focal fields) and compared with 15 fields with wheat control strips. We found strong reductions in cereal leaf beetle (CLB) density (larvae: 40%; adults of the second generation: 53%) and plant damage caused by CLB (61%) in fields with flower strips compared with control fields. Natural enemies of CLB were strongly increased in flower strips and in part also in adjacent wheat fields. Flower strip effects on natural enemies, pests and crop damage were largely independent of landscape complexity (8-75% non-crop area). Our study demonstrates a high effectiveness of annual flower strips in promoting pest control, reducing CLB pest levels below the economic threshold. Hence, the studied flower strip offers a viable alternative to insecticides. This highlights the high potential of tailored agri-environment schemes to contribute to ecological intensification and may encourage more farmers to adopt such schemes. © 2015 The Author(s).
    Proceedings of the Royal Society B: Biological Sciences 09/2015; 282(1814). DOI:10.1098/rspb.2015.1369
  • Matthias Pechmann · Evelyn E Schwager · Natascha Turetzek · Nikola-Michael Prpic
    [Show abstract] [Hide abstract]
    ABSTRACT: The intercalary segment is a limbless version of the tritocerebral segment and is present in the head of all insects, whereas other extant arthropods have retained limbs on their tritocerebral segment (e.g. the pedipalp limbs in spiders). The evolutionary origin of limb loss on the intercalary segment has puzzled zoologists for over a century. Here we show that an intercalary segment-like phenotype can be created in spiders by interfering with the function of the Hox gene labial. This links the origin of the intercalary segment to a functional change in labial. We show that in the spider Parasteatoda tepidariorum the labial gene has two functions: one function in head tissue maintenance that is conserved between spiders and insects, and a second function in pedipalp limb promotion and specification, which is only present in spiders. These results imply that labial was originally crucial for limb formation on the tritocerebral segment, but that it has lost this particular subfunction in the insect ancestor, resulting in limb loss on the intercalary segment. Such loss of a subfunction is a way to avoid adverse pleiotropic effects normally associated with mutations in developmental genes, and may thus be a common mechanism to accelerate regressive evolution. © 2015 The Author(s).
    Proceedings of the Royal Society B: Biological Sciences 09/2015; 282(1814). DOI:10.1098/rspb.2015.1162
  • Melanie Ghoul · Stuart A West · Helle Krogh Johansen · Søren Molin · Odile B Harrison · Martin C J Maiden · Lars Jelsbak · John B Bruce · Ashleigh S Griffin
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacteriocins are toxins produced by bacteria to kill competitors of the same species. Theory and laboratory experiments suggest that bacteriocin production and immunity play a key role in the competitive dynamics of bacterial strains. The extent to which this is the case in natural populations, especially human pathogens, remains to be tested. We examined the role of bacteriocins in competition using Pseudomonas aeruginosa strains infecting lungs of humans with cystic fibrosis (CF). We assessed the ability of different strains to kill each other using phenotypic assays, and sequenced their genomes to determine what bacteriocins (pyocins) they carry. We found that (i) isolates from later infection stages inhibited earlier infecting strains less, but were more inhibited by pyocins produced by earlier infecting strains and carried fewer pyocin types; (ii) this difference between early and late infections appears to be caused by a difference in pyocin diversity between competing genotypes and not by loss of pyocin genes within a lineage over time; (iii) pyocin inhibition does not explain why certain strains outcompete others within lung infections; (iv) strains frequently carry the pyocin-killing gene, but not the immunity gene, suggesting resistance occurs via other unknown mechanisms. Our results show that, in contrast to patterns observed in experimental studies, pyocin production does not appear to have a major influence on strain competition during CF lung infections. © 2015 The Author(s).
    Proceedings of the Royal Society B: Biological Sciences 09/2015; 282(1814). DOI:10.1098/rspb.2015.0972
  • Geneviève Thibodeau · David A Walsh · Beatrix E Beisner
    [Show abstract] [Hide abstract]
    ABSTRACT: Biodiversity currently faces unprecedented threats owing to species extinctions. Ecologically, compensatory dynamics can ensure stable community biomass following perturbation. However, whether there is a contribution of genetic diversity to community responses is an outstanding question. To date, the contribution of evolutionary processes through genotype shifts has not been assessed in naturally co-occurring multi-species communities in the field. We examined the mechanisms contributing to the response of a lake phytoplankton community exposed to either a press or pulse acidification perturbation in lake mesocosms. To assess community shifts in the ecological response of morphospecies, we identified taxa microscopically. We also assessed genotype shifts by sequencing the ITS2 region of ribosomal DNA. We observed ecological and genetic contributions to community responses. The ecological response was attributed to compensatory morphospecies dynamics and occurred primarily in the Pulse perturbation treatment. In the Press treatments, in addition to compensatory dynamics, we observed evidence for genotype selection in two species of chlorophytes, Desmodesmus cuneatus and an unidentified Chlamydomonas. Our study demonstrates that while genotype selection may be rare, it is detectable and occurs especially when new environmental conditions are maintained for long enough to force selection processes on standing variation. © 2015 The Author(s).
    Proceedings of the Royal Society B: Biological Sciences 09/2015; 282(1814). DOI:10.1098/rspb.2015.1215
  • [Show abstract] [Hide abstract]
    ABSTRACT: Two recent studies provide provocative experimental findings about the potential influence of kin recognition and cooperation on the level of sexual conflict in Drosophila melanogaster. In both studies, male fruit flies apparently curbed their mate-harming behaviours in the presence of a few familiar or related males, suggesting some form of cooperation mediated by kin selection. In one study, the reduction in agonistic behaviour by brothers apparently rendered them vulnerable to dramatic loss of paternity share when competing with an unrelated male. If these results are robust and generalizable, fruit flies could be a major new focus for the experimental study of kin selection and social evolution. In our opinion, however, the restrictive conditions required for male cooperation to be adaptive in this species make it unlikely to evolve. We investigated these phenomena in two different populations of D. melanogaster using protocols very similar to those in the two previous studies. Our experiments show no evidence for a reduction in mate harm based upon either relatedness or familiarity between males, and no reduction in male reproductive success when two brothers are in the presence of an unfamiliar, unrelated, 'foreign' male. Thus, the reduction of sexual conflict owing to male cooperation does not appear to be a general feature of the species, at least under domestication, and these contrasting results call for further investigation: in new populations, in the field and in the laboratory populations in which these phenomena have been reported. © 2015 The Author(s).
    Proceedings of the Royal Society B: Biological Sciences 08/2015; 282(1813). DOI:10.1098/rspb.2015.1417
  • [Show abstract] [Hide abstract]
    ABSTRACT: The growth of organisms from humans to bacteria is affected by environmental conditions. However, mechanisms governing growth and size control are not well understood, particularly in the context of changes in food availability in developing multicellular organisms. Here, we use a novel microfluidic platform to study the impact of diet on the growth and development of the nematode Caenorhabditis elegans. This device allows us to observe individual worms throughout larval development, quantify their growth as well as pinpoint the moulting transitions marking successive developmental stages. Under conditions of low food availability, worms grow very slowly, but do not moult until they have achieved a threshold size. The time spent in larval stages can be extended by over an order of magnitude, in agreement with a simple threshold size model. Thus, a critical worm size appears to trigger developmental progression, and may contribute to prolonged lifespan under dietary restriction. © 2015 The Author(s).
    Proceedings of the Royal Society B: Biological Sciences 08/2015; 282(1813). DOI:10.1098/rspb.2015.1283
  • [Show abstract] [Hide abstract]
    ABSTRACT: Twin and family studies suggest that political attitudes are partially determined by an individual's genotype. The dopamine D4 receptor gene (DRD4) exon III repeat region that has been extensively studied in connection with human behaviour, is a plausible candidate to contribute to individual differences in political attitudes. A first United States study provisionally identified this gene with political attitude along a liberal-conservative axis albeit contingent upon number of friends. In a large sample of 1771 Han Chinese university students in Singapore, we observed a significant main effect of association between the DRD4 exon III variable number of tandem repeats and political attitude. Subjects with two copies of the 4-repeat allele (4R/4R) were significantly more conservative. Our results provided evidence for a role of the DRD4 gene variants in contributing to individual differences in political attitude particularly in females and more generally suggested that associations between individual genes, and neurochemical pathways, contributing to traits relevant to the social sciences can be provisionally identified. © 2015 The Author(s).
    Proceedings of the Royal Society B: Biological Sciences 08/2015; 282(1813). DOI:10.1098/rspb.2015.1360
  • [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of multicellular organisms represents one of the major evolutionary transitions in the history of life. A potential advantage of forming multicellular clumps is that it provides an efficiency benefit to pre-existing cooperation, such as the production of extracellular 'public goods'. However, this is complicated by the fact that cooperation could jointly evolve with clumping, and clumping could have multiple consequences for the evolution of cooperation. We model the evolution of clumping and a cooperative public good, showing that (i) when considered separately, both clumping and public goods production gradually increase with increasing genetic relatedness; (ii) in contrast, when the traits evolve jointly, a small increase in relatedness can lead to a major shift in evolutionary outcome-from a non-clumping state with low public goods production to a cooperative clumping state with high values of both traits; (iii) high relatedness makes it easier to get to the cooperative clumping state and (iv) clumping can be inhibited when it increases the number of cells that the benefits of cooperation must be shared with, but promoted when it increases relatedness between those cells. Overall, our results suggest that public goods sharing can facilitate the formation of well-integrated cooperative clumps as a first step in the evolution of multicellularity. © 2015 The Author(s).
    Proceedings of the Royal Society B: Biological Sciences 08/2015; 282(1813). DOI:10.1098/rspb.2015.1075
  • [Show abstract] [Hide abstract]
    ABSTRACT: Species around the world have suffered collapses, and a key question is why some populations are more vulnerable than others. Traditional conservation biology and evidence from terrestrial species suggest that slow-growing populations are most at risk, but interactions between climate variability and harvest dynamics may alter or even reverse this pattern. Here, we test this hypothesis globally. We use boosted regression trees to analyse the influences of harvesting, species traits and climate variability on the risk of collapse (decline below a fixed threshold) across 154 marine fish populations around the world. The most important factor explaining collapses was the magnitude of overfishing, while the duration of overfishing best explained long-term depletion. However, fast growth was the next most important risk factor. Fast-growing populations and those in variable environments were especially sensitive to overfishing, and the risk of collapse was more than tripled for fast-growing when compared with slow-growing species that experienced overfishing. We found little evidence that, in the absence of overfishing, climate variability or fast growth rates alone drove population collapse over the last six decades. Expanding efforts to rapidly adjust harvest pressure to account for climate-driven lows in productivity could help to avoid future collapses, particularly among fast-growing species. © 2015 The Author(s).
    Proceedings of the Royal Society B: Biological Sciences 08/2015; 282(1813). DOI:10.1098/rspb.2015.1053
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pumping is a vital natural process, imitated by humans for thousands of years. We demonstrate that a hitherto undocumented mechanism of fluid transport pumps nectar onto the hummingbird tongue. Using high-speed cameras, we filmed the tongue-fluid interaction in 18 hummingbird species, from seven of the nine main hummingbird clades. During the offloading of the nectar inside the bill, hummingbirds compress their tongues upon extrusion; the compressed tongue remains flattened until it contacts the nectar. After contact with the nectar surface, the tongue reshapes filling entirely with nectar; we did not observe the formation of menisci required for the operation of capillarity during this process. We show that the tongue works as an elastic micropump; fluid at the tip is driven into the tongue's grooves by forces resulting from re-expansion of a collapsed section. This work falsifies the long-standing idea that capillarity is an important force filling hummingbird tongue grooves during nectar feeding. The expansive filling mechanism we report in this paper recruits elastic recovery properties of the groove walls to load nectar into the tongue an order of magnitude faster than capillarity could. Such fast filling allows hummingbirds to extract nectar at higher rates than predicted by capillarity-based foraging models, in agreement with their fast licking rates. © 2015 The Author(s).
    Proceedings of the Royal Society B: Biological Sciences 08/2015; 282(1813). DOI:10.1098/rspb.2015.1014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ecologically important traits do not evolve without limits. Instead, evolution is constrained by the set of available and viable phenotypes. In particular, natural selection may only favour a narrow range of adaptive optima constrained within selective regimes. Here, I integrate data with theory to test whether selection explains phenotypic constraint. A global database of 599 plant species from 94 families shows that stomatal ratio, a trait affecting photosynthesis and defence against pathogens, is highly constrained. Most plants have their stomata on the lower leaf surface (hypostomy), but species with half their stomata on each surface (amphistomy) form a distinct mode in the trait distribution. A model based on a trade-off between maximizing photosynthesis and a fitness cost of upper stomata predicts a limited number of adaptive solutions, leading to a multimodal trait distribution. Phylogenetic comparisons show that amphistomy is the most common among fast-growing species, supporting the view that CO2 diffusion is under strong selection. These results indicate that selective optima stay within a relatively stable set of selective regimes over macroevolutionary time. © 2015 The Author(s).
    Proceedings of the Royal Society B: Biological Sciences 08/2015; 282(1813). DOI:10.1098/rspb.2015.1498