BMC Nephrology (BMC Nephrol)

Publisher: BioMed Central

Journal description

BMC Nephrology publishes original research articles in all aspects of the prevention, diagnosis and management of kidney and associated disorders, as well as related molecular genetics, pathophysiology, and epidemiology.

Current impact factor: 1.69

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.69
2013 Impact Factor 1.52
2012 Impact Factor 1.644
2011 Impact Factor 2.176
2010 Impact Factor 2.136

Impact factor over time

Impact factor

Additional details

5-year impact 1.81
Cited half-life 2.50
Immediacy index 0.26
Eigenfactor 0.01
Article influence 0.58
Website BMC Nephrology website
Other titles BioMed Central nephrology, Nephrology
ISSN 1471-2369
OCLC 45259909
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

BioMed Central

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Publisher's version/PDF may be used
    • Eligible UK authors may deposit in OpenDepot
    • Creative Commons Attribution License
    • Copy of License must accompany any deposit.
    • All titles are open access journals
    • 'BioMed Central' is an imprint of 'Springer Verlag (Germany)'
  • Classification

Publications in this journal

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A noninvasive system for determining left ventricular (LV) filling pressure may help to improve personalized fluid removal goals in hemodialysis patients. We previously showed that the change in photoplethysmography (PPG) pulse amplitude measured by finger PPG during a Valsalva maneuver correlates with invasively measured left ventricular end-diastolic pressure (LVEDP). This key PPG change, the ratio of finger PPG pulse amplitude at end-Valsalva to baseline, is known as the Pulse Amplitude Ratio, PAR. The objective of this study was to determine how PAR changes after fluid removal in hemodialysis. We tested subjects with end-stage renal disease, before and after hemodialysis. Each subject performed a Valsalva maneuver with an effort of 20 mmHg for 10 s, guided by the device display. Finger PPG was recorded continuously before and during the maneuver. PAR was calculated automatically. Twenty-seven subjects (21 Males) ages 25-75 years were tested. Access sites were AV-fistulas of the arm predominantly. Weight decreased from 99.7 ± 36.9 kg to 97.0 ± 36.0 kg (p < 0.0003) with an average fluid removal of 3.07 ± 1.08 l. Correspondingly, PAR decreased from 0.74 ± 0.24 to 0.62 ± 0.23 (p = 0.003). The change in PAR was correlated with baseline PAR (r = 0.48, p = 0.01). An index of left heart filling pressure obtained noninvasively using finger photoplethysmography during the Valsalva maneuver is sensitive enough to detect reductions in filling pressure after fluid removal with hemodialysis. Further studies are warranted to determine if this method can be used to guide fluid removal during hemodialysis.
    BMC Nephrology 12/2015; 16(1):138. DOI:10.1186/s12882-015-0135-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Podocyte detachment and apoptosis are two risk factors causing podocyte loss, F-actin rearrangement is involved in detachment and apoptosis. However, the nature of events that promote detachment and apoptosis of podocytes and whether detachment occurred simultaneously with apoptosis are still unclear. Previously, it was found that angiopoietin-like3 (Angptl3) induces F-actin rearrangement in podocytes. In this study we investigate whether Angptl3 influences podocyte loss (detachment and apoptosis) and the process through which Angptl3 exactly influenced the podocyte loss. Methods In conditionally immortalized mice podocytes, recombinant mice Angptl3 protein (rm-Angptl3) was used to mimic Angptl3 overexpression model and transfection with small interfering RNA (siRNA) to knockdown the expression of Angptl3. Both flow cytometry analysis and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay were used to detect apoptosis. Rearrangement of F-actin was assessed using confocal microscopy. Western blot assay was used to measure levels of Angptl3, integrin α3β1, integrin-linked kinase (ILK), p53, caspase 3, and phosphorylation of integrin β1. Results In a puromycin aminonucleoside (PAN)-induced podocyte injury model, rm-Angptl3 accelerated the loss of podocytes, both detachment and apoptosis occurred, and F-actin rearrangement is involved in the process. However, knockdown of Angptl3 by siRNA markedly ameliorated these injuries. Observed effects were partially correlated with the altered integrin α3β1, ILK and p53, rather than caspase 3. Conclusions Angptl3 is a novel factor involved in the PAN-induced podocyte loss by affecting detachment and apoptosis in vitro. This study helps to deepen the understanding of the mechanisms of podocyte loss and lays the foundation for developing a new successful therapy for podocyte injury via lower expression of Angptl3.
    BMC Nephrology 12/2015; 16(1). DOI:10.1186/s12882-015-0034-4
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Burn patients with AKI have a higher mortality, rapid diagnosis and early treatment of AKI are necessary. Recent studies have demonstrated that urinary KIM-1 and IL-18 are potential biomarkers of early-stage AKI, however, changes in urinary KIM-1 and IL-18 levels are unclear in patients with burns. The aim of our study was to determine whether combined KIM-1 and IL-18 are more sensitive than traditional markers in detecting kidney injury in patients with burns. Ninety-five burn patients hospitalized at the Burns and Plastic Surgery Center of our hospital from April 2013 to September 2013 were enrolled into this prospective study and divided into mild- (n = 37), moderate- (n = 30) and severe-burn groups (n = 28) by burn injury surface area. In the moderate- and severe-burn groups, patients were subcategorized to either the acute kidney injury (AKI) group, in which serum creatinine (Scr) increased to ≥26.5 μmol/L within 48 h, or the non-AKI group. Fifteen healthy subjects were selected as a control group. Blood specimens were collected to determine blood urea nitrogen (BUN), Scr, and other biochemical indicators. Urine samples collected at admission and 48 h after admission were analyzed for KIM-1 and IL-18. Correlations among urinary KIM-1 and IL-18, burn degree, and clinical biochemical indicators were investigated. AKI occurred in 11.2 % of burn patients (none in the mild-burn group). AKI developed 48 h after admission in 10.0 % of the moderate- and 28.6 % of the severe-burn groups. Urinary KIM-1 concentration in the moderate- and severe-burn groups was significantly higher than that in the control group; urinary IL-18 concentrations did not differ significantly among the burn and control groups. The AKI group had significantly higher concentrations of urinary KIM-1 and IL-18 than the non-AKI group, both at admission (p = 0.001 and p < 0.001, respectively) and 48 h later (p = 0.001 and p < 0.001, respectively). Both urinary KIM-1 and IL-18 increased before Scr. Receiver operating-curve (ROC) analysis demonstrated that KIM-1 combined with IL-18 predicted AKI with 72.7 % sensitivity and 92.8 % specificity. The area under the ROC curve was 0.904. Our results suggest that urinary KIM-1 and IL-18 may be used as early, sensitive indicators of AKI in patients with burns of varying degrees and provide clinical clues that can be used in early prevention of AKI.
    BMC Nephrology 12/2015; 16(1):142. DOI:10.1186/s12882-015-0140-3
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is unknown whether variability of estimated Glomerular Filtration Rate (eGFR) is a risk factor for dialysis or death in patients with chronic kidney disease (CKD). This study aimed to evaluate variability of estimated Glomerular Filtration Rate (eGFR) as a risk factor for dialysis or death to facilitate optimum care among high risk patients. A longitudinal retrospective cohort study of 70,598 Veterans Health Administration veteran patients with diabetes and CKD (stage 3–4) in 2000 with up to 5 years of follow-up. VHA and Medicare files were linked to derive study variables. We used Cox proportional hazards models to evaluate association between time to initial dialysis/death and key independent variables: time-varying eGFR variability (measured by standard deviation (SD)) and eGFR means and slopes while adjusting for prior hospitalizations, and comorbidities. There were 76.7% older than 65 years, 97.5% men, and 81.9% Whites. Patients were largely in early stage 3 (61.2%), followed by late stage 3 (28.9%), and stage 4 (9.9%); 29.1%, 46.8%, and 73.3%, respectively, died or had dialysis during the follow-up. eGFR SDs (median: 5.8, 5.1, and 4.0 ml/min/1.73 m2 ) and means (median: 54.1, 41.0, 27.2 ml/min/1.73 m2) from all two-year moving intervals decreased as CKD advanced; eGFR variability (relative to the mean) increased when CKD progressed (median coefficient of variation: 10.9, 12.8, and 15.4). Cox regressions revealed that one unit increase in a patient’s standard deviation of eGFRs from prior two years was significantly associated with about 7% increase in risk of dialysis/death in the current year, similarly in all three CKD stages. This was after adjusting for concurrent means and slopes of eGFRs, demographics, prior hospitalization, and comorbidities. For example, the hazard of dialysis/death increased by 7.2% (hazard ratio:1.072; 95% CI = 1.067, 1.080) in early stage 3. eGFR variability was independently associated with elevated risk of dialysis/death even after controlling for eGFR means and slopes.
    BMC Nephrology 12/2015; 16(1). DOI:10.1186/s12882-015-0025-5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Vascular access-related infections and septicemia are the main causes of infections among hemodialysis patients, the majority of them caused by Staphylococcus species. Acetylsalicylic acid (ASA) has recently been reported with a probable antistaphylococcal activity. This study aimed to evaluate the effect of ASA on the risk of dialysis-related infection and septicemia among incident chronic hemodialysis patients. In a nested case-control study, we identified 449 cases of vascular access-related infections and septicemia, and 4156 controls between 2001 and 2007 from our incident chronic hemodialysis patients' cohort. Cases were defined as patients hospitalized with a main diagnosis of vascular access-related infection or septicemia on the discharge sheet (ICD-9 codes). Up to ten controls per case were selected by incidence density sampling and matched to cases on age, sex and follow-up time. ASA exposure was measured at the admission and categorized as: no use, low dose (80-324 mg/d), high dose (≥325 mg/d). Odds ratios (OR) for infections were estimated using multivariable conditional logistic regression analysis, adjusting for potential confounders. Compared to no use, neither dose of ASA was associated with a decreased risk of infection: low dose (OR 1.03, 95 % CI 0.82-1.28) and high dose (OR 1.30, 95 % CI 0.96-1.75). However, diabetes (OR = 1.32, 95 % CI = 1.07-1.62) and anticoagulant use (OR = 1.62, 95 % CI = 1.30-2.02) were associated with a higher risk. Among hemodialysis patients, ASA use was not associated with a reduced risk of hospitalizations for dialysis-related infections or septicemia. However, ASA may remain beneficial for its cardiovascular indications.
    BMC Nephrology 12/2015; 16(1):115. DOI:10.1186/s12882-015-0112-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Understanding the regulation of mineral homeostasis and function of the skeleton as buffer for Calcium and Phosphate has regained new interest with introduction of the syndrome “Chronic Kidney Disease-Mineral and Bone Disorder”(CKD-MBD). The very rapid minute-to-minute regulation of plasma-Ca2+ (p-Ca2+) takes place via an exchange mechanism of Ca2+ between plasma and bone. A labile Ca storage pool exists on bone surfaces storing excess or supplying Ca when blood Ca is lowered. Aim was to examine minute-to-minute regulation of p-Ca2+ in the very early phase of acute uremia, as induced by total bilateral nephrectomy and to study the effect of absence of kidneys on the rapid recovery of p-Ca2+ from a brief induction of acute hypocalcemia. The rapid regulation of p-Ca2+ was examined in sham-operated rats, acute nephrectomized rats(NX), acute thyroparathyrectomized(TPTX) rats and NX-TPTX rats. The results clearly showed that p-Ca2+ falls rapidly and significantly very early after acute NX, from 1.23 ± 0.02 to 1.06 ± 0.04 mM (p < 0.001). Further hypocalcemia was induced by a 30 min iv infusion of EGTA. Control groups had saline. After discontinuing EGTA a rapid increase in p-Ca2+ took place, but with a lower level in NX rats (p < 0.05). NX-TPTX model excluded potential effect of accumulation of Calcitonin and C-terminal PTH, both having potential hypocalcemic actions. Acute TPTX resulted in hypercalcemia, 1.44 ± 0.02 mM and less in NX-TPTX rats,1.41 ± 0.02 mM (p < 0.05). Recovery of p-Ca2+ from hypocalcemia resulted in lower levels in NX-TPTX than in TPTX rats, 1.20 ± 0.02 vs.1.30 ± 0.02 (p < 0.05) demonstrating that absence of kidneys significantly affected the rapid regulation of p-Ca2+ independent of PTH, C-PTH and CT. P-Ca2+ on a minute-to-minute basis is influenced by presence of kidneys. Hypocalcemia developed rapidly in acute uremia. Levels of p-Ca2+, obtained during recovery from hypocalcemia resulted in lower levels in acutely nephrectomized rats. This indicates that kidneys are of significant importance for the ‘set-point’ of p-Ca2+ on bone surface, independently of PTH and calcitonin. Our results point toward existence of an as yet unknown factor/mechanism, which mediates the axis between kidney and bone, and which is involved in the very rapid regulation of p-Ca2+.
    BMC Nephrology 12/2015; 16(1). DOI:10.1186/s12882-015-0019-3
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low mean arterial pressure (MAP) can cause low renal blood flow and damage the kidneys. However, in the general population, it remains unclear whether or not decline in renal function is related to MAP. The present study examined the relationship between MAP and decreased glomerular filtration rate(GFR) in participans aged ≥35 years from the Liaoning province of China. A total of 11345 representative individuals aged ≥ 35 years was selected and a cross-sectional survey was conducted from January 2012 to August 2013 to describe the gender-specific prevalence and factors associated with decreased GFR in rural areas of Liaoning Province. Men with decreased eGFR (eGFR < 60ml/min per 1.73m(2)) were older, and had higher meanWC, systolic and diastolic BP, PP, MAP, total fasting glucose, LDL-C ,glyceride and uric acid levels and were current drinker/smoker at the baseline (all P < 0.05). Those with low education level, low income, low physical activity, low hemoglobin and HDL-C level had decreased eGFR (all P < 0.05). In women, the results were similar to those of men, but DBP and drinking status had no associations with the eGFR at the baseline (all P < 0.05). After adjustment for age, men with MAP of >112.2 mmHg versus ≤ 93.8 mmHg had ORs for decreased eGFR of 2.367 (95 % CI: 1.248 to 4.488) .After multivariable adjustment, an MAP of >112.2 mmHg versus ≤93.8 mmHg had an OR for decreased eGFR of 3.249 (95 % CI:1.394 to 7.575) in men, whereas in women, MAP was not associated with decreased eGFR. MAP was associated with decreased eGFR in men, while in women MAP was not associated with decreased eGFR. These findings provide some evidence that a different adaptive response to renal regulation may exist in males and females.
    BMC Nephrology 12/2015; 16(1):137. DOI:10.1186/s12882-015-0115-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: The burden of chronic kidney disease (CKD) is substantial, and is associated with high hospitalization rates, premature deaths, and considerable health care costs. These factors provide strong rationale for quality improvement initiatives in CKD care. The interdisciplinary care clinic (IDC) has emerged as one solution to improving CKD care. The IDC team may include other physicians, advanced practice providers, nurses, dietitians, pharmacists, and social workers—all working together to provide effective care to patients with chronic kidney disease. Studies suggest that IDCs may improve patient education and preparedness prior to kidney failure, both of which have been associated with improved health outcomes. Interdisciplinary care may also delay the progression to end-stage renal disease and reduce mortality. While most studies suggest that IDC services are likely cost-effective, financing IDCs is challenging and many insurance providers do not pay for all of the services. There are also no robust long-term studies demonstrating the cost-effectiveness of IDCs. This review discusses IDC models and its potential impact on CKD care as well as some of the challenges that may be associated with implementing these clinics.
    BMC Nephrology 12/2015; 16(1). DOI:10.1186/s12882-015-0158-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Guidelines exist for chronic kidney disease (CKD) but are not well implemented in clinical practice. We evaluated the impact of a guideline-based clinical decision support system (CDSS) on laboratory monitoring and achievement of laboratory targets in stage 3–4 CKD patients. Methods We performed a matched cohort study of 12,353 stage 3–4 CKD patients whose physicians opted to receive an automated guideline-based CDSS with CKD-related lab results, and 42,996 matched controls whose physicians did not receive the CDSS. Physicians were from US community-based physician practices utilizing a large, commercial laboratory (LabCorp®). We compared the percentage of laboratory tests obtained within guideline-recommended intervals and the percentage of results within guideline target ranges between CDSS and non-CDSS patients. Laboratory tests analyzed included estimated glomerular filtration rate, plasma parathyroid hormone, serum calcium, phosphorus, 25-hydroxy vitamin D (25-D), total carbon dioxide, transferrin saturation (TSAT), LDL cholesterol (LDL-C), blood hemoglobin, and urine protein measurements. Results Physicians who used the CDSS ordered all CKD-relevant testing more in accord with guidelines than those who did not use the system. Odds ratios favoring CDSS ranged from 1.29 (TSAT) to 1.88 (serum phosphorus) [CI, 1.20 to 2.01], p < 0.001 for all tests. The CDSS impact was greater for primary care physicians versus nephrologists. CDSS physicians met guideline targets for LDL-C and 25-D more often, but hemoglobin targets less often, than non-CDSS physicians. Use of CDSS did not impact guideline target achievement for the remaining tests. Conclusions Use of an automated laboratory-based CDSS may improve physician adherence to guidelines with respect to timely monitoring of CKD.
    BMC Nephrology 12/2015; 16(1). DOI:10.1186/s12882-015-0159-5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increasing dialysate flow rates (Qd) from 500 to 800 ml/min has been recommended to increase dialysis efficiency. A few publications show that increasing Qd no longer led to an increase in mass transfer area coefficient (KoA) or Kt/V measurement. Our objectives were: 1) Studying the effect in Kt of using a Qd of 400, 500, 700 ml/min and autoflow (AF) with different modern dialysers. 2) Comparing the effect on Kt of water consumption vs. dialysis time to obtain an individual objective of Kt (Ktobj) adjusted to body surface. This is a prospective single-centre study with crossover design. Thirty-one patients were studied and six sessions with each Qd were performed. HD parameters were acquired directly from the monitor display: effective blood flow rate (Qbe), Qd, effective dialysis time (Te) and measured by conductivity monitoring, final Kt. We studied a total of 637 sessions: 178 with 500 ml/min, 173 with 700 ml/min, 160 with AF and 126 with 400 ml/min. Kt rose a 4% comparing 400 with 500 ml/min, and 3% comparing 500 with 700 ml/min. Ktobj was reached in 82.4, 88.2, 88.2 and 94.1% of patients with 400, AF, 500 and 700 ml/min, respectively. We did not find statistical differences between dialysers. The difference between programmed time and Te was 8′ when Qd was 400 and 500 ml/min and 8.8′ with Qd = 700 ml/min. Calculating an average time loss of eight minutes/session, we can say that a patient loses 24′ weekly, 312′ monthly and 62.4 hours yearly. Identical Kt could be obtained with Qd of 400 and 500 ml/min, increasing dialysis time 9.1′ and saving 20% of dialysate. Our data suggest that increasing Qd over 400 ml/min for these dialysers offers a limited benefit. Increasing time is a better alternative with demonstrated benefits to the patient and also less water consumption.
    BMC Nephrology 12/2015; 16(1). DOI:10.1186/s12882-015-0013-9