BMC Medical Imaging Journal Impact Factor & Information

Publisher: BioMed Central

Journal description

BMC Medical Imaging publishes original research articles in the use, development, and evaluation of imaging techniques to diagnose and manage disease.

Current impact factor: 0.98

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 0.983

Additional details

5-year impact 0.00
Cited half-life 0.00
Immediacy index 0.00
Eigenfactor 0.00
Article influence 0.00
Website BMC Medical Imaging website
Other titles BMC medical imaging, BioMed Central medical imaging, Medical imaging
ISSN 1471-2342
OCLC 48748135
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

BioMed Central

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Publisher's version/PDF may be used
    • Eligible UK authors may deposit in OpenDepot
    • Creative Commons Attribution License
    • Copy of License must accompany any deposit.
    • All titles are open access journals
    • 'BioMed Central' is an imprint of 'Springer Verlag (Germany)'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Independent central reading or off-site reading of imaging endpoints is increasingly used in clinical trials. Clinician-reported outcomes, such as endoscopic disease activity scores, have been shown to be subject to bias and random error. Central reading attempts to limit bias and improve accuracy of the assessment, two factors that are critical to trial success. Whether one central reader is sufficient and how to best integrate the input of more than one central reader into one output measure, is currently not known. In this concept paper we develop the theoretical foundations of a reading algorithm that can achieve both objectives without jeopardizing operational efficiency We examine the role of expert versus competent reader, frame scoring of imaging as a classification task, and propose a voting algorithm (VISA: Voting for Image Scoring and Assessment) as the most appropriate solution which could also be used to operationally define imaging gold standards. We propose two image readers plus an optional third reader in cases of disagreement (2 + 1) for ordinary scoring tasks. We argue that it is critical in trials with endoscopically determined endpoints to include the score determined by the site reader, at least in endoscopy clinical trials. Juries with more than 3 readers could define a reference standard that would allow a transition from measuring reader agreement to measuring reader accuracy. We support VISA by applying concepts from engineering (triple-modular redundancy) and voting theory (Condorcet’s jury theorem) and illustrate our points with examples from inflammatory bowel disease trials, specifically, the endoscopy component of the Mayo Clinic Score of ulcerative colitis disease activity. Detailed flow-diagrams (pseudo-code) are provided that can inform program design. The VISA “2 + 1” reading algorithm, based on voting, can translate individual reader scores into a final score in a fashion that is both mathematically sound (by avoiding averaging of ordinal data) and in a manner that is consistent with the scoring task at hand (based on decisions about the presence or absence of features, a subjective classification task). While the VISA 2 + 1 algorithm is currently being used in clinical trials, empirical data of its performance have not yet been reported.
    BMC Medical Imaging 12/2015; 15(1). DOI:10.1186/s12880-015-0049-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Manual segmentations of the whole intracranial vault in high-resolution magnetic resonance images are often regarded as very time-consuming. Therefore it is common to only segment a few linearly spaced intracranial areas to estimate the whole volume. The purpose of the present study was to evaluate how the validity of intracranial volume estimates is affected by the chosen interpolation method, orientation of the intracranial areas and the linear spacing between them. Methods Intracranial volumes were manually segmented on 62 participants from the Gothenburg MCI study using 1.5 T, T1-weighted magnetic resonance images. Estimates of the intracranial volumes were then derived using subsamples of linearly spaced coronal, sagittal or transversal intracranial areas from the same volumes. The subsamples of intracranial areas were interpolated into volume estimates by three different interpolation methods. The linear spacing between the intracranial areas ranged from 2 to 50 mm and the validity of the estimates was determined by comparison with the entire intracranial volumes. Results A progressive decrease in intra-class correlation and an increase in percentage error could be seen with increased linear spacing between intracranial areas. With small linear spacing (≤15 mm), orientation of the intracranial areas and interpolation method had negligible effects on the validity. With larger linear spacing, the best validity was achieved using cubic spline interpolation with either coronal or sagittal intracranial areas. Even at a linear spacing of 50 mm, cubic spline interpolation on either coronal or sagittal intracranial areas had a mean absolute agreement intra-class correlation with the entire intracranial volumes above 0.97. Conclusion Cubic spline interpolation in combination with linearly spaced sagittal or coronal intracranial areas overall resulted in the most valid and robust estimates of intracranial volume. Using this method, valid ICV estimates could be obtained in less than five minutes per patient.
    BMC Medical Imaging 12/2015; 15(1). DOI:10.1186/s12880-015-0045-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background The objective of this study was to evaluate the feasibility and diagnostic value of 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18F-FDG PET/CT) and 99mTc-methylenediphosphonate (MDP) whole-body bone scanning (BS) for the detection of osteolytic bone metastases. Methods Thirty-four patients with pathologically confirmed malignancies and suspected osteolytic bone metastases underwent 18F-FDG PET/CT and 99mTc-MDP whole-body BS within 30 days. The sensitivity, specificity, and accuracy with respect to the diagnosis of osteolytic bone metastases and bone lesions were compared between the two imaging methods. Results The sensitivity, specificity, and accuracy of 18F-FDG PET/CT for the diagnosis of osteolytic bone metastases were 94.3% (95% confidence interval [CI], 91.6–96.2%), 83.3% (95% CI, 43.6–96.9%), and 94.2% (95% CI, 91.5–96.1%), respectively. It was found that 99mTc-MDP whole-body BS could discriminate between patients with 50.2% (95% CI, 45.4–55.1%) sensitivity, 50.0% (95% CI, 18.8–81.2%) specificity, and 50.2% (95% CI, 45.5–55.1%) accuracy. 18F-FDG PET/CT achieved higher sensitivity, specificity, and accuracy in detecting osteolytic bone metastases than 99mTc-MDP whole-body BS (p<0.001). Conclusions F-FDG PET/CT has a higher diagnostic value than 99mTc-MDP whole-body BS in the detection of osteolytic bone metastases, especially in the vertebra.
    BMC Medical Imaging 03/2015; 15. DOI:10.1186/s12880-015-0047-2
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The main objective of the present method was to automatically obtain a spatial curve of the thoracic and lumbar spine based on a 3D shape measurement of a human torso with developed scoliosis. Manual determination of the spine curve, which was based on palpation of the thoracic and lumbar spinous processes, was found to be an appropriate way to validate the method. Therefore a new, noninvasive, optical 3D method for human torso evaluation in medical practice is introduced.Methods Twenty-four patients with confirmed clinical diagnosis of scoliosis were scanned using a specially developed 3D laser profilometer. The measuring principle of the system is based on laser triangulation with one-laser-plane illumination. The measurement took approximately 10 seconds at 700 mm of the longitudinal translation along the back. The single point measurement accuracy was 0.1 mm. Computer analysis of the measured surface returned two 3D curves. The first curve was determined by manual marking (manual curve), and the second was determined by detecting surface curvature extremes (automatic curve). The manual and automatic curve comparison was given as the root mean square deviation (RMSD) for each patient. The intra-operator study involved assessing 20 successive measurements of the same person, and the inter-operator study involved assessing measurements from 8 operators.ResultsThe results obtained for the 24 patients showed that the typical RMSD between the manual and automatic curve was 5.0 mm in the frontal plane and 1.0 mm in the sagittal plane, which is a good result compared with palpatory accuracy (9.8 mm). The intra-operator repeatability of the presented method in the frontal and sagittal planes was 0.45 mm and 0.06 mm, respectively. The inter-operator repeatability assessment shows that that the presented method is invariant to the operator of the computer program with the presented method.Conclusions The main novelty of the presented paper is the development of a new, non-contact method that provides a quick, precise and non-invasive way to determine the spatial spine curve for patients with developed scoliosis and the validation of the presented method using the palpation of the spinous processes, where no harmful ionizing radiation is present.
    BMC Medical Imaging 02/2015; 15(1):2. DOI:10.1186/s12880-015-0044-5
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Mammography, the gold standard for breast cancer screening misses some cancers, especially in women with dense breasts. Breast ultrasonography as a supplementary imaging tool for further evaluation of symptomatic women with mammographically dense breasts may improve the detection of mass lesions otherwise missed at mammography.Objective To determine the incremental breast cancer detection rate using US scanning in symptomatic women with mammographically dense breasts in a resource poor environment.MethodsA cross sectional descriptive study. Women referred for mammography underwent bilateral breast ultrasound, and mammography for symptom evaluation. The lesions seen by both modalities were described using sonographic BI-RADS lexicon and categorized. Ultrasound guided core biopsies were performed. IRB approval was obtained and all participants provided informed written consent.ResultsIn total 148 women with mammographically dense breasts were recruited over six months. The prevalence of breast cancer in symptomatic women with mammographically dense breasts was 22/148 (15%). Mammography detected 16/22 (73%) of these cases and missed 6/22 (27%). The six breast cancer cases missed were correctly diagnosed on breast ultrasonography. Sonographic features typical of breast malignancy were irregular shape, non-parallel orientation, non circumscribed margin, echogenic halo, and increased lesion vascularity (p values¿<¿0.005). Typical sonofeatures of benign mass lesions were: oval shape, parallel orientation and circumscribed margin (p values <0.005).Conclusion Breast ultrasound scan as a supplementary imaging tool detected 27% more malignant mass lesions otherwise missed by mammography among these symptomatic women with mammographically dense breasts. We recommend that ultra sound scanning in routine evaluation of symptomatic women with mammographically dense breasts.
    BMC Medical Imaging 12/2014; 14(1):241. DOI:10.1186/s12880-014-0041-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Optical coherence tomography (OCT) is a minimally invasive imaging technique, which utilizes the spatial and temporal coherence properties of optical waves backscattered from biological material. Recent advances in tunable lasers and infrared camera technologies have enabled an increase in the OCT imaging speed by a factor of more than 100, which is important for retinal imaging where we wish to study fast physiological processes in the biological tissue. However, the high scanning rate causes proportional decrease of the detector exposure time, resulting in a reduction of the system signal-to-noise ratio (SNR). One approach to improving the image quality of OCT tomograms acquired at high speed is to compensate for the noise component in the images without compromising the sharpness of the image details. Methods In this study, we propose a novel reconstruction method for rapid OCT image acquisitions, based on a noise-compensated homotopic modified James-Stein non-local regularized optimization strategy. The performance of the algorithm was tested on a series of high resolution OCT images of the human retina acquired at different imaging rates. Results Quantitative analysis was used to evaluate the performance of the algorithm using two state-of-art denoising strategies. Results demonstrate significant SNR improvements when using our proposed approach when compared to other approaches. Conclusions A new reconstruction method based on a noise-compensated homotopic modified James-Stein non-local regularized optimization strategy was developed for the purpose of improving the quality of rapid OCT image acquisitions. Preliminary results show the proposed method shows considerable promise as a tool to improve the visualization and analysis of biological material using OCT.
    BMC Medical Imaging 10/2014; 14(1):37. DOI:10.1186/1471-2342-14-37
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Early and accurate diagnosis of melanoma, the deadliest type of skin cancer, has the potential to reduce morbidity and mortality rate. However, early diagnosis of melanoma is not trivial even for experienced dermatologists, as it needs sampling and laboratory tests which can be extremely complex and subjective. The accuracy of clinical diagnosis of melanoma is also an issue especially in distinguishing between melanoma and mole. To solve these problems, this paper presents an approach that makes non-subjective judgements based on quantitative measures for automatic diagnosis of melanoma.
    BMC Medical Imaging 10/2014; 14(1):36. DOI:10.1186/1471-2342-14-36
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Manual annotation of landmarks is a known source of variance, which exist in all fields of medical imaging, influencing the accuracy and interpretation of the results. However, the variability of human facial landmarks is only sparsely addressed in the current literature as opposed to e.g. the research fields of orthodontics and cephalometrics. We present a full facial 3D annotation procedure and a sparse set of manually annotated landmarks, in effort to reduce operator time and minimize the variance. Method Facial scans from 36 voluntary unrelated blood donors from the Danish Blood Donor Study was randomly chosen. Six operators twice manually annotated 73 anatomical and pseudo-landmarks, using a three-step scheme producing a dense point correspondence map. We analyzed both the intra- and inter-operator variability, using mixed-model ANOVA. We then compared four sparse sets of landmarks in order to construct a dense correspondence map of the 3D scans with a minimum point variance. Results The anatomical landmarks of the eye were associated with the lowest variance, particularly the center of the pupils. Whereas points of the jaw and eyebrows have the highest variation. We see marginal variability in regards to intra-operator and portraits. Using a sparse set of landmarks (n=14), that capture the whole face, the dense point mean variance was reduced from 1.92 to 0.54 mm. Conclusion The inter-operator variability was primarily associated with particular landmarks, where more leniently landmarks had the highest variability. The variables embedded in the portray and the reliability of a trained operator did only have marginal influence on the variability. Further, using 14 of the annotated landmarks we were able to reduced the variability and create a dense correspondences mesh to capture all facial features.
    BMC Medical Imaging 10/2014; 14(1):35. DOI:10.1186/1471-2342-14-35
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the impact of high pitch cardiac CT vs. retrospective ECG gated CT on the quantification of calcified vessel stenoses, with assessment of the influence of tube voltage, reconstruction kernel and heart rate.
    BMC Medical Imaging 09/2014; 14(1):30. DOI:10.1186/1471-2342-14-30