BMC Evolutionary Biology (BMC EVOL BIOL )

Description

BMC Evolutionary Biology publishes original research articles in all aspects of molecular and non-molecular evolution of all organisms, as well as phylogenetics and palaeontology.

  • Impact factor
    3.29
    Show impact factor history
     
    Impact factor
  • 5-year impact
    4.43
  • Cited half-life
    4.40
  • Immediacy index
    0.30
  • Eigenfactor
    0.05
  • Article influence
    1.67
  • Website
    BMC Evolutionary Biology website
  • Other titles
    BMC evolutionary biology, BioMed Central evolutionary biology, Evolutionary biology
  • ISSN
    1471-2148
  • OCLC
    47657384
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Collaborative tools are of great help in conducting projects involving distant workers. Recent web technologies have helped to build such tools for jointly editing office documents and scientific data, yet none are available for handling phylogenies. Though a large number of studies and projects in evolutionary biology and systematics involve collaborations between scientists of different institutes, current tree comparison visualization software and websites are directed toward single-user access. Moreover, tree comparison functionalities are dispersed between different software that mainly focus on high level single tree visualization but to the detriment of basic tree comparison features. Results The web platform presented here, named CompPhy, intends to fill this gap by allowing collaborative work on phylogenies and by gathering simple advanced tools dedicated to tree comparison. It offers functionalities for tree edition, tree comparison, supertree inference and data management in a collaborative environment. The latter aspect is a specific feature of the platform, allowing people located in different places to work together at the same time on a common project. CompPhy thus proposes shared tree visualization, both synchronous and asynchronous tree manipulation, data exchange/storage, as well as facilities to keep track of the progress of analyses in working sessions. Specific advanced comparison tools are also available, such as consensus and supertree inference, or automated branch swaps of compared trees. As projects can be readily created and shared, CompPhy is also a tool that can be used easily to interact with students in a educational setting, either in the classroom or for assignments. Conclusions CompPhy is the first web platform devoted to the comparison of phylogenetic trees allowing real-time distant collaboration on a phylogenetic/phylogenomic project. This application can be accessed freely with a recent browser at the following page of the ATGC bioinformatics platform: http://www.atgc-montpellier.fr/compphy/.
    BMC Evolutionary Biology 12/2014; 14:253.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Investigating the evolution of species-specific insect genitalia is central to understanding how morphological diversification contributes to reproductive isolation and lineage divergence. While many studies evoke some form of sexual selection to explain genitalia diversity, the basis of selection and the mechanism of heterospecific mate exclusion remains vague. I conducted reciprocal mate pair trials in the Drosophila mojavensis species cluster to quantify the frequency of failed insemination attempts, historically referred to as pseudocopulation, between lineages with discrete size and shape differences of the male aedeagus.ResultsIn cross-taxon matings aedeagus size had a significant effect on pseudocopulation frequencies, while aedeagus shape and genetic distance did not. The direction of the size difference was an important factor for successful mating. When females were mated to a cross-taxon male with a larger aedeagus than males from her own species, the pair could not establish a successful mating interaction. Females mated to cross-taxon males with a smaller aedeagus than conspecific males were able to establish the mating interaction but had issues disengaging at the end of the interaction.Conclusions The results of this study support a role for aedeagus size in the male-female mating interaction, with a secondary role for aedeagus shape. In natural populations, mating failure based on aedeagus size could serve as an important reproductive isolating mechanism resulting in failed insemination attempts after both the male and female show a willingness to mate.
    BMC Evolutionary Biology 12/2014; 14(1):255.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Cooperative benefits of mutualistic interactions are affected by genetic variation among the interacting partners, which may have consequences for interaction-specificities across guilds of sympatric species with similar mutualistic life histories. The gardens of fungus-growing (attine) ants produce carbohydrate active enzymes that degrade plant material collected by the ants and offer them food in exchange. The spectrum of these enzyme activities is an important symbiont service to the host but may vary among cultivar genotypes. The sympatric occurrence of several Trachymyrmex and Sericomyrmex higher attine ants in Gamboa, Panama provided the opportunity to do a quantitative study of species-level interaction-specificity.ResultsWe genotyped the ants for Cytochrome Oxidase and their Leucoagaricus fungal cultivars for ITS rDNA. Combined with activity measurements for 12 carbohydrate active enzymes, these data allowed us to test whether garden enzyme activity was affected by fungal strain, farming ants or combinations of the two. We detected two cryptic ant species, raising ant species number from four to six, and we show that the 38 sampled colonies reared a total of seven fungal haplotypes that were different enough to represent separate Leucoagaricus species. The Sericomyrmex species and one of the Trachymyrmex species reared the same fungal cultivar in all sampled colonies, but the remaining four Trachymyrmex species largely shared the other cultivars. Fungal enzyme activity spectra were significantly affected by both cultivar species and farming ant species, and more so for certain ant-cultivar combinations than others. However, relative changes in activity of single enzymes only depended on cultivar genotype and not on the ant species farming a cultivar.Conclusions Ant cultivar symbiont-specificity varied from almost full symbiont sharing to one-to-one specialization, suggesting that trade-offs between enzyme activity spectra and life-history traits such as desiccation tolerance, disease susceptibility and temperature sensitivity may apply in some combinations but not in others. We hypothesize that this may be related to ecological specialization in general, but this awaits further testing. Our finding of both cryptic ant species and extensive cultivar diversity underlines the importance of identifying all species-level variation before embarking on estimates of interaction specificity.
    BMC Evolutionary Biology 12/2014; 14(1):244.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background The origins of life on the Earth required chemical entities to interact with their environments in ways that could respond to natural selection. The concept of interpretation, where biotic entities use signs in their environment as proxy for the existence of other items of selective value in their environment, has been proposed on theoretical grounds to be relevant to the origins and early evolution of life. However this concept has not been demonstrated empirically.ResultsHere, we present data that certain catalytic RNA sequences have properties that would enable interpretation of divalent cation levels in their environment. By assaying the responsiveness of two variants of the Tetrahymena ribozyme to the Ca2+ ion as a sign for the more catalytically useful Mg2+ ion, we show an empirical proof-of-principle that interpretation can be an evolvable trait in RNA, often suggested as a model system for early life. In particular we demonstrate that in vitro, the wild-type version of the Tetrahymena ribozyme is not interpretive, in that it cannot use Ca2+ as a sign for Mg2+. Yet a variant of this sequence containing five mutations that alter its ability to utilize the Ca2+ ion engenders a strong interpretive characteristic in this RNA.Conclusions We have shown that RNA molecules in a test tube can meet the minimum criteria for the evolution of interpretive behaviour in regards to their responses to divalent metal ion concentrations in their environment. Interpretation in RNA molecules provides a property entirely dependent on natural physico-chemical interactions, but capable of shaping the evolutionary trajectory of macromolecules, especially in the earliest stages of life¿s history.
    BMC Evolutionary Biology 12/2014; 14(1):248.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Young genes and genes under positive selection commonly contribute to adaptive phenotypic evolution. Early developmental stages are very important for establishing phenotypes, which might be helpful for studying the evolutionary patterns of these rapidly evolving genes.ResultsHere, we performed a weighted gene co-expression network analysis to identify modules of co-expressed genes at different stages of Drosophila melanogaster development. We found that young genes, including duplicated, orphan, and young lncRNA genes, are significantly enriched among modules associated with specific developmental stages. In addition, genes undergoing rapid amino acid sequence evolution driven by positive selection showed a similar proportion of essentiality with other genes, and enrichment in modules for specific developmental stages.Conclusions Our integrative analysis revealed important roles for the origin of new genes and rapid amino acid sequence evolution in development that may account for specific phenotype evolution in Drosophila melanogaster.
    BMC Evolutionary Biology 12/2014; 14(1):241.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Life-history studies of wild bird populations often focus on the relationship between an individual¿s condition and its capacity to mount an immune response, as measured by a commonly-employed assay of cutaneous immunity, the PHA skin test. In addition, haematocrit, the packed cell volume in relation to total blood volume, is often measured as an indicator of physiological performance. A multi-year study of a wild population of house wrens has recently revealed that those exhibiting the highest condition and strongest PHA responses as nestlings are most likely to be recruited to the breeding population and to breed through two years of age; in contrast, intermediate haematocrit values result in the highest recruitment to the population. Selection theory would predict, therefore, that most of the underlying genetic variation in these traits should be exhausted resulting in low heritability, although such traits may also exhibit low heritability because of increased residual variance. Here, we examine the genetic and environmental variation in condition, cutaneous immunity, and haematocrit using an animal model based on a pedigree of approximately 2,800 house wrens.ResultsEnvironmental effects played a paramount role in shaping the expression of the fitness-related traits measured in this wild population, but two of them, condition and haematocrit, retained significant heritable variation. Condition was also positively correlated with both the PHA response and haematocrit, but in the absence of any significant genetic correlations, it appears that this covariance arises through parallel effects of the environment acting on this suite of traits.Conclusions The maintenance of genetic variation in different measures of condition appears to be a pervasive feature of wild bird populations, in contradiction of conventional selection theory. A major challenge in future studies will be to explain how such variation persists in the face of the directional selection acting on condition in house wrens and other species.
    BMC Evolutionary Biology 12/2014; 14(1):242.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background The allele frequency spectrum (AFS) consists of counts of the number of single nucleotide polymorphism (SNP) loci with derived variants present at each given frequency in a sample. Multiple approaches have recently been developed for parameter estimation and calculation of model likelihoods based on the joint AFS from two or more populations. We conducted a simulation study of one of these approaches, implemented in the Python module ¿a¿i, to compare parameter estimation and model selection accuracy given different sample sizes under one- and two-population models.ResultsOur simulations included a variety of demographic models and two parameterizations that differed in the timing of events (divergence or size change). Using a number of SNPs reasonably obtained through next-generation sequencing approaches (10,000 - 50,000), accurate parameter estimates and model selection were possible for models with more ancient demographic events, even given relatively small numbers of sampled individuals. However, for recent events, larger numbers of individuals were required to achieve accuracy and precision in parameter estimates similar to that seen for models with older divergence or population size changes. We quantify i) the uncertainty in model selection, using tools from information theory, and ii) the accuracy and precision of parameter estimates, using the root mean squared error, as a function of the timing of demographic events, sample sizes used in the analysis, and complexity of the simulated models.Conclusions Here, we illustrate the utility of the genome-wide AFS for estimating demographic history and provide recommendations to guide sampling in population genomics studies that seek to draw inference from the AFS. Our results indicate that larger samples of individuals (and thus larger AFS) provide greater power for model selection and parameter estimation for more recent demographic events.
    BMC Evolutionary Biology 12/2014; 14(1):254.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Phenotypic diversity among populations may result from divergent natural selection acting directly on traits or via correlated responses to changes in other traits. One of the most frequent patterns of correlated response is the proportional change in the dimensions of anatomical traits associated with changes in growth or absolute size, known as allometry. Livebearing fishes subject to predation gradients have been shown to repeatedly evolve larger caudal peduncles and smaller cranial regions under high predation regimes. Poecilia vivipara is a livebearing fish commonly found in coastal lagoons in the north of the state of Rio de Janeiro, Brazil. Similar to what is observed in other predation gradients, lagoons inhabited by P. vivipara vary in the presence of piscivorous fishes; contrary to other poeciliid systems, populations of P. vivipara vary greatly in body size, which opens the possibility of strong allometric effects on shape variation. Here we investigated body shape diversification among six populations of P. vivipara along a predation gradient and its relationship with allometric trajectories within and among populations.ResultsWe found substantial body size variation and correlated shape changes among populations. Multivariate regression analysis showed that size variation among populations accounted for 66% of shape variation in females and 38% in males, suggesting that size is the most important dimension underlying shape variation among populations of P. vivipara in this system. Changes in the relative sizes of the caudal peduncle and cranial regions were only partly in line with predictions from divergent natural selection associated with predation regime.Conclusions Our results suggest the possibility that adaptive shape variation among populations has been partly constrained by allometry in P. vivipara. Processes governing body size changes are therefore important in the diversification of this species. We conclude that in species characterized by substantial among-population differences in body size, ignoring allometric effects when investigating divergent natural selection¿s role in phenotypic diversification might not be warranted.
    BMC Evolutionary Biology 12/2014; 14(1):251.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Background Rodents of the genus Mus represent one of the most valuable biological models for biomedical and evolutionary research. Out of the four currently recognized subgenera, Nannomys (African pygmy mice, including the smallest rodents in the world) comprises the only original African lineage. Species of this subgenus became important models for the study of sex determination in mammals and they are also hosts of potentially dangerous pathogens. Nannomys ancestors colonized Africa from Asia at the end of Miocene and Eastern Africa should be considered as the place of their first radiation. In sharp contrast with this fact and despite the biological importance of Nannomys, the specimens from Eastern Africa were obviously under-represented in previous studies and the phylogenetic and distributional patterns were thus incomplete. Results We performed comprehensive genetic analysis of 657 individuals of Nannomys collected at approximately 300 localities across the whole sub-Saharan Africa. Phylogenetic reconstructions based on mitochondrial (CYTB) and nuclear (IRBP) genes identified five species groups and three monotypic ancestral lineages. We provide evidence for important cryptic diversity and we defined and mapped the distribution of 27 molecular operational taxonomic units (MOTUs) that may correspond to presumable species. Biogeographical reconstructions based on data spanning all of Africa modified the previous evolutionary scenarios. First divergences occurred in Eastern African mountains soon after the colonization of the continent and the remnants of these old divergences still occur there, represented by long basal branches of M. (previously Muriculus) imberbis and two undescribed species from Ethiopia and Malawi. The radiation in drier lowland habitats associated with the decrease of body size is much younger, occurred mainly in a single lineage (called the minutoides group, and especially within the species M. minutoides), and was probably linked to aridification and climatic fluctuations in middle Pliocene/Pleistocene. Conclusions We discovered very high cryptic diversity in African pygmy mice making the genus Mus one of the richest genera of African mammals. Our taxon sampling allowed reliable phylogenetic and biogeographic reconstructions that (together with detailed distributional data of individual MOTUs) provide a solid basis for further evolutionary, ecological and epidemiological studies of this important group of rodents.
    BMC Evolutionary Biology 12/2014; 14(256).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background The donkey (Equus asinus) is an important domestic animal that provides a reliable source of protein and method of transportation for many human populations. However, the process of domestication and the dispersal routes of the Chinese donkey are still unclear, as donkey remains are sparse in the archaeological record and often confused with horse remains. To explore the maternal origins and dispersal route of Chinese donkeys, both mitochondrial DNA D-loop and cytochrome b gene fragments of 21 suspected donkey remains from four archaeological sites in China were amplified and sequenced.ResultsMolecular methods of species identification show that 17 specimens were donkeys and three samples had the maternal genetic signature of horses. One sample that dates to about 20,000 years before present failed to amplify. In this study, the phylogenetic analysis reveals that ancient Chinese donkeys have high mitochondrial DNA diversity and two distinct mitochondrial maternal lineages, known as the Somali and Nubian lineages. These results indicate that the maternal origin of Chinese domestic donkeys was probably related to the African wild ass, which includes the Nubian wild ass (Equus africanus africanus) and the Somali wild ass (Equus africanus somaliensis). Combined with historical records, the results of this study implied that domestic donkeys spread into west and north China before the emergence of the Han dynasty. The number of Chinese domestic donkeys had increased primarily to meet demand for the expansion of trade, and they were likely used as commodities or for shipping goods along the Silk Road during the Tang Dynasty, when the Silk Road reached its golden age.Conclusions This study is the first to provide valuable ancient animal DNA evidence for early trade between African and Asian populations. The ancient DNA analysis of Chinese donkeys also sheds light on the dynamic process of the maternal origin, domestication, and dispersal route of ancient Chinese donkeys.
    BMC Evolutionary Biology 11/2014; 14(1):246.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background The importance of hybridisation during species diversification has long been debated among evolutionary biologists. It is increasingly recognised that hybridisation events occurred during the evolutionary history of numerous species, especially during the early stages of adaptive radiation. We study the effect of hybridisation on diversification in the clownfishes, a clade of coral reef fish that diversified through an adaptive radiation process. While two species of clownfish are likely to have been described from hybrid specimens, the occurrence and effect of hybridisation on the clade diversification is yet unknown.ResultsWe generate sequences of three mitochondrial genes to complete an existing dataset of nuclear sequences and document cytonuclear discordance at a node, which shows a drastic increase of diversification rate. Then, using a tree-based jack-knife method, we identify clownfish species likely stemming from hybridisation events. Finally, we use molecular cloning and identify the putative parental species of four clownfish specimens that display the morphological characteristics of hybrids.Conclusions Our results show that consistently with the syngameon hypothesis, hybridisation events are linked with a burst of diversification in the clownfishes. Moreover, several recently diverged clownfish lineages likely originated through hybridisation, which indicates that diversification, catalysed by hybridisation events, may still be happening.
    BMC Evolutionary Biology 11/2014; 14(1):245.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Insect compound eyes are composed of ommatidia, which contain photoreceptor cells that are sensitive to different wavelengths of light defined by the specific rhodopsin proteins that they express. The fruit fly Drosophila melanogaster has several different ommatidium types that can be localised to specific retinal regions, such as the dorsal rim area (DRA), or distributed stochastically in a mosaic across the retina, like the `pale¿ and `yellow¿ types. Variation in these ommatidia patterns very likely has important implications for the vision of insects and could underlie behavioural and environmental adaptations. However, despite the detailed understanding of ommatidia specification in D. melanogaster, the extent to which the frequency and distribution of the different ommatidium types vary between sexes, strains and species of Drosophila is not known.ResultsWe investigated the frequency and distribution of ommatidium types based on rhodopsin protein expression, and the expression levels of rhodopsin transcripts in the eyes of both sexes of different strains of D. melanogaster, D. simulans and D. mauritiana. We found that while the number of DRA ommatidia was invariant, Rh3 expressing ommatidia were more frequent in the larger eyes of females compared to the males of all species analysed. The frequency and distribution of ommatidium types also differed between strains and species. The D. simulans strain ZOM4 has the highest frequency of Rh3 expressing ommatidia, which is associated with a non-stochastic patch of pale and odd-coupled ommatidia in the dorsal-posterior of their eyes.Conclusions Our results show that there is striking variation in the frequency and distribution of ommatidium types between sexes, strains and species of Drosophila. This suggests that evolutionary changes in the underlying regulatory mechanisms can alter the distribution of ommatidium types to promote or restrict their expression in specific regions of the eye within and between species, and that this could cause differences in vision among these flies.
    BMC Evolutionary Biology 11/2014; 14(1):240.