BMC Evolutionary Biology (BMC EVOL BIOL )

Description

BMC Evolutionary Biology publishes original research articles in all aspects of molecular and non-molecular evolution of all organisms, as well as phylogenetics and palaeontology.

  • Impact factor
    3.29
    Show impact factor history
     
    Impact factor
  • 5-year impact
    4.43
  • Cited half-life
    4.40
  • Immediacy index
    0.30
  • Eigenfactor
    0.05
  • Article influence
    1.67
  • Website
    BMC Evolutionary Biology website
  • Other titles
    BMC evolutionary biology, BioMed Central evolutionary biology, Evolutionary biology
  • ISSN
    1471-2148
  • OCLC
    47657384
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Calisto is the largest butterfly genus in the West Indies but its systematics, historical biogeography and the causes of its diversification have not been previously rigorously evaluated. Several studies attempting to explain the wide-ranging diversity of Calisto gave different weights to vicariance, dispersal and adaptive radiation. We utilized molecular phylogenetic approaches and secondary calibrations points to estimate lineage ages. In addition, we used the dispersal-extinction-cladogenesis model and Caribbean paleogeographical information to reconstruct ancestral geographical distributions. We also evaluated different models of diversification to estimate the dynamics of lineage radiation within Calisto. By understanding the evolution of Calisto butterflies, we attempt to identify the main processes acting on insular insect diversity and the causes of its origin and its maintenance.ResultsThe crown age of Calisto was estimated to the early Oligocene (31¿±¿5 Ma), and a single shift in diversification rate following a diversity-dependent speciation process was the best explanation for the present-day diversity found within the genus. A major increase in diversification rate was recovered at 14 Ma, following geological arrangements that favoured the availability of empty niches. Inferred ancestral distributional ranges suggested that the origin of extant Calisto is in agreement with a vicariant model and the origin of the Cuban lineage was likely the result of vicariance caused by the Cuba-Hispaniola split. A long-distance dispersal was the best explanation for the colonization of Jamaica and the Bahamas.Conclusions The ancestral geographical distribution of Calisto is in line with the paleogeographical model of Caribbean colonization, which favours island-to-island vicariance. Because the sister lineage of Calisto remains ambiguous, its arrival to the West Indies remains to be explained, although, given its age and historical biogeography, the hypothesized GAARlandia land bridge might have been a plausible introduction route from continental America. Intra-island radiation caused by ecological innovation and the abiotic creation of niche spaces was found to be the main force shaping Calisto diversity and island endemism in Hispaniola and Cuba.
    BMC Evolutionary Biology 09/2014; 14(1):199.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Stripes and other high contrast patterns found on animals have been hypothesised to cause ¿motion dazzle¿, a type of defensive coloration that operates when in motion, causing predators to misjudge the speed and direction of object movement. Several recent studies have found some support for this idea, but little is currently understood about the mechanisms underlying this effect. Using humans as model `predators¿ in a touch screen experiment we investigated further the effectiveness of striped targets in preventing capture, and considered how stripes compare to other types of patterning in order to understand what aspects of target patterning are important in making a target difficult to capture.ResultsWe find that striped targets are among the most difficult to capture, but that other patterning types are also highly effective at preventing capture in this task. Several target types, including background sampled targets and targets with a `spot¿ on were significantly easier to capture than striped targets. We also show differences in capture attempt rates between different target types, but we find no differences in learning rates between target types.Conclusions We conclude that striped targets are effective in preventing capture, but are not uniquely difficult to catch, with luminance matched grey targets also showing a similar capture rate. We show that key factors in making capture easier are a lack of average background luminance matching and having trackable `features¿ on the target body. We also find that striped patterns are attempted relatively quickly, despite being difficult to catch. We discuss these findings in relation to the motion dazzle hypothesis and how capture rates may be affected more generally by pattern type.
    BMC Evolutionary Biology 09/2014; 14(1):201.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Human bitter taste receptors are encoded by a gene family consisting of 25 functional TAS2R loci. In addition, humans carry 11 TAS2R pseudogenes, some of which display evidence for substantial diversification among species, showing lineage-specific loss of function. Since bitter taste is thought to help prevent the intake of toxic substances, diversity at TAS2R genes could reflect the action of natural selection on the ability to recognize some bitter compounds rather than others. Whether species-specific variation in TAS2R pseudogenes is solely the result of genetic drift or whether it may have been influenced by selection due to different feeding behaviors has been an open question.ResultsIn this study, we analyzed patterns of variation at human TAS2R pseudogenes in both African and non-African populations, and compared them to those observable in nonhuman primates and archaic human species. Our results showed a similar worldwide distribution of allelic variation for most of the pseudogenes, with the exception of the TAS2R6P and TAS2R18P loci, both of which presented an unexpected higher frequency of derived alleles outside Africa. At the TAS2R6P locus, two SNPs were found in strong linkage disequilibrium (r2¿>¿0.9) with variants in the functional TAS2R5 gene, which showed signatures of selection. The human TAS2R18P carried a species-specific stop-codon upstream of four polymorphic insertions in the reading frame. SNPs at this locus showed significant positive values in a number of neutrality statistics, and age estimates indicated that they arose after the homo-chimp divergence.Conclusions The similar distribution of variation of many human bitter receptor pseudogenes among human populations suggests that they arose from the ancestral forms by a unidirectional loss of function. However we explain the higher frequency of TAS2R6P derived alleles outside Africa as the effect of the balancing selection acting on the closely linked TAS2R5 gene. In contrast, TAS2R18P displayed a more complex history, suggesting an acquired function followed by a recent pseudogenization that predated the divergence of human modern and archaic species, which we hypothesize was associated with adaptions to dietary changes.
    BMC Evolutionary Biology 09/2014; 14(1):198.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background New Caledonia harbours a highly diverse and endemic flora, and 13 (out of the 19 worldwide) species of Araucaria are endemic to this territory. Their phylogenetic relationships remain largely unresolved. Using nuclear microsatellites and chloroplast DNA sequencing, we focused on five closely related Araucaria species to investigate among-species relationships and the distribution of within-species genetic diversity across New Caledonia.ResultsThe species could be clearly distinguished here, except A. montana and A. laubenfelsii that were not differentiated and, at most, form a genetic cline. Given their apparent morphological and ecological similarity, we suggested that these two species may be considered as a single evolutionary unit. We observed cases of nuclear admixture and incongruence between nuclear and chloroplast data, probably explained by introgression and shared ancestral polymorphism. Ancient hybridization was evidenced between A. biramulata and A. laubenfelsii in Mt Do, and is strongly suspected between A. biramulata and A. rulei in Mt Tonta. In both cases, extensive asymmetrical backcrossing eliminated the influence of one parent in the nuclear DNA composition. Shared ancestral polymorphism was also observed for cpDNA, suggesting that species diverged recently, have large effective sizes and/or that cpDNA experienced slow rates of molecular evolution. Within-species genetic structure was pronounced, probably because of low gene flow and significant inbreeding, and appeared clearly influenced by geography. This may be due to survival in distinct refugia during Quaternary climatic oscillations.Conclusions The study species probably diverged recently and/or are characterized by a slow rate of cpDNA sequence evolution, and introgression is strongly suspected. Within-species genetic structure is tightly linked with geography. We underline the conservation implications of our results, and highlight several perspectives.
    BMC Evolutionary Biology 09/2014; 14(1):171.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Species thermal requirements are one of the principal determinants of their ecology and biogeography, although our understanding of the interplay between these factors is limited by the paucity of integrative empirical studies. Here we use empirically collected thermal tolerance data in combination with molecular phylogenetics/phylogeography and ecological niche modelling to study the evolution of a clade of three western Mediterranean diving beetles, the Agabus brunneus complex.ResultsThe preferred mitochondrial DNA topology recovered A. ramblae (North Africa, east Iberia and Balearic islands) as paraphyletic, with A. brunneus (widespread in the southwestern Mediterranean) and A. rufulus (Corsica and Sardinia) nested within it, with an estimated origin between 0.60-0.25 Ma. All three species were, however, recovered as monophyletic using nuclear DNA markers. A Bayesian skyline plot suggested demographic expansion in the clade at the onset of the last glacial cycle. The species thermal tolerances differ significantly, with A. brunneus able to tolerate lower temperatures than the other taxa. The climatic niche of the three species also differs, with A. ramblae occupying more arid and seasonal areas, with a higher minimum temperature in the coldest month. The estimated potential distribution for both A. brunneus and A. ramblae was most restricted in the last interglacial, becoming increasingly wider through the last glacial and the Holocene.Conclusions The A. brunneus complex diversified in the late Pleistocene, most likely in south Iberia after colonization from Morocco. Insular forms did not differentiate substantially in morphology or ecology, but A. brunneus evolved a wider tolerance to cold, which appeared to have facilitated its geographic expansion. Both A. brunneus and A. ramblae expanded their ranges during the last glacial, although they have not occupied areas beyond their LGM potential distribution except for isolated populations of A. brunneus in France and England. On the islands and possibly Tunisia secondary contact between A. brunneus and A. ramblae or A. rufulus has resulted in introgression. Our work highlights the complex dynamics of speciation and range expansions within southern areas during the last glacial cycle, and points to the often neglected role of North Africa as a source of European biodiversity.
    BMC Evolutionary Biology 09/2014; 14(1):187.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background The evolutionary history of the Old World monkey tribe Papionini comprising the genera Macaca, Mandrillus, Cercocebus, Lophocebus, Theropithecus, Rungwecebus and Papio is still matter of debate. Although the African Papionini (subtribe Papionina) are generally considered to be the sister lineage to the Asian Papionini (subtribe Macacina), previous studies based on morphological data, nuclear or mitochondrial sequences have shown contradictory phylogenetic relationships among and within both subtribes. To further elucidate the phylogenetic relationships among papionins and to estimate divergence ages we generated mitochondrial genome data and combined them with previously published sequences.ResultsOur mitochondrial gene tree comprises 33 papionins representing all genera of the tribe except Rungwecebus. In contrast to most previous studies, the obtained phylogeny suggests a division of the Papionini into three main mitochondrial clades with similar ages: 1) Papio, Theropithecus, Lophocebus; 2) Mandrillus, Cercocebus; and 3) Macaca; the Mandrillus¿+¿Cercocebus clade appears to be more closely related to Macaca than to the other African Papionini. Further, we find paraphyletic relationships within the Mandrillus¿+¿Cercocebus clade as well as in Papio. Relationships among Theropithecus, Lophocebus and Papio remain unresolved. Divergence ages reveal initial splits within the three mitochondrial clades around the Miocene/Pliocene boundary and differentiation of Macaca species groups occurred on a similar time scale as those between genera of the subtribe Papionina.Conclusion Due to the largely well-resolved mitochondrial phylogeny, our study provides new insights into the evolutionary history of the Papionini. Results show some contradictory relationships in comparison to previous analyses, notably the paraphyly within the Cercocebus¿+¿Mandrillus clade and three instead of only two major mitochondrial clades. Divergence ages among species groups of macaques are similar to those among African Papionini genera, suggesting that diversification of the mitochondrial genome is of a similar magnitude in both subtribes. However, since our mitochondrial tree represents just a single gene tree that most likely does not reflect the true species tree, extensive nuclear sequence data is required to illuminate the true species phylogeny of papionins and to trace possible ancient hybridization events among lineages.
    BMC Evolutionary Biology 09/2014; 14(1):176.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Studies of insect-plant interactions have provided critical insights into the ecology and evolution of adaptive processes within and among species. Cactophilic Drosophila species have received much attention because larval development occurs in the necrotic tissues of cacti, and both larvae and adults feed on these tissues. Such Drosophila-cactus interactions include effects of the host plant on the physiology and behavior of the flies, especially so their nutritional status, mating condition and reproduction. The aim of this work was to compare the transcriptional responses of two species, Drosophila antonietae and Drosophila meridionalis, and identify genes potentially related to responses to odors released by their host cactus, Cereus hildmannianus. The two fly species are sympatric in most of their populations and use this same host cactus in nature.ResultsWe obtained 47 unique sequences (USs) for D. antonietae in a suppression subtractive hybridization screen, 30 of these USs had matches with genes predicted for other Drosophila species. For D. meridionalis we obtained 81 USs, 46 of which were orthologous with genes from other Drosophila species. Functional information (Gene Ontology) revealed that these differentially expressed genes are related to metabolic processes, detoxification mechanisms, signaling, response to stimuli, and reproduction. The expression of 13 genes from D. meridionalis and 12 from D. antonietae were further analyzed by quantitative real time-PCR, showing that four genes were significantly overexpressed in D. antonietae and six in D. meridionalis.Conclusions Our results revealed the differential expression of genes related to responses to odor stimuli by a cactus, in two associated fly species. Although the majority of activated genes were similar between the two species, we also observed that certain metabolic pathways were specifically activated, especially those related to signaling pathways and detoxification mechanisms. The activation of these genes may reflect different metabolic pathways used by these flies in their interaction with this host cactus. Our findings provide insight into how the use of C. hildmannianus may have arisen independently in the two fly species, through genetic differentiation in metabolic pathways to effectively explore this cactus as a host.
    BMC Evolutionary Biology 09/2014; 14(1):191.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Lysozyme g is an antibacterial enzyme that was first found in the eggs of some birds, but recently has been found in additional species, including non-vertebrates. Some previously characterized lysozyme g sequences are suggested to have altered secretion potential and enzymatic activity, however the distribution of these altered sequences is unknown. Duplicated copies of the lysozyme g gene exist in some species; however, the origins of the duplicates and their roles in altered function are unclear.ResultsWe identified 234 lysozyme g sequences from 118 vertebrate species, including 181 sequences that are full or near full length representing all vertebrate classes except cartilaginous fish. Phylogenetic analysis shows that most lysozyme g gene duplicates are recent or lineage specific events, however three amplification events are more ancient, those in an early amniote, an early mammal, and an early teleost. The older gene duplications are associated with changes in function, including changes in secretion potential and muramidase antibacterial enzymatic activity.Conclusions Lysozyme g is an essential muramidase enzyme that is widespread in vertebrates. Duplication of the lysozyme g gene, and the retention of non-secreted isozymes that have lost enzymatic activity indicate that lysozyme g has an activity other than the muramidase activity associated with being an antibacterial enzyme.
    BMC Evolutionary Biology 08/2014; 14(1):188.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Myzostomids are marine annelids, nearly all of which live symbiotically on or inside echinoderms, chiefly crinoids, and to a lesser extent asteroids and ophiuroids. These symbionts possess a variety of adult body plans and lifestyles. Most described species live freely on the exterior of their hosts as adults (though starting life on the host inside cysts), while other taxa permanently reside in galls, cysts, or within the host¿s mouth, digestive system, coelom, or gonads. Myzostomid lifestyles range from stealing incoming food from the host¿s food grooves to consuming the host¿s tissue directly. Previous molecular studies of myzostomids have had limited sampling with respect to assessing the evolutionary relationships within the group; therefore molecular data from 75 myzostomid taxa were analyzed using maximum likelihood and maximum parsimony methods. To compare relationships of myzostomids with their hosts, a phylogeny was inferred for 53 hosts and a tanglegram constructed with 88 associations.ResultsGall- and some cyst-dwellers were recovered as a clade, while cyst-to-free-living forms were found as a grade including two clades of internal host-eaters (one infecting crinoids and the other asteroids and ophiuroids), mouth/digestive system inhabitants, and other cyst-dwellers. Clades of myzostomids were recovered that associated with asteroids, ophiuroids, and stalked or feather star crinoids. Co-phylogenetic analyses rejected a null-hypothesis of random associations at the global level, but not for individual associations. Event-based analyses relied most upon host-switching and duplication events to reconcile the association history.Conclusion Hypotheses were revised concerning the systematics and evolution of Myzostomida, as well their relationships to their hosts. We found two or three transitions between food-stealing and host-eating. Taxa that dwell within the mouth or digestive system and some cyst forms are arguably derived from cyst-to-free-living ancestors ¿ possibly the result of a free-living form moving to the mouth and paedomorphic retention of the juvenile cyst. Phylogenetic conservatism in host use was observed among related myzostomid taxa. This finding suggests that myzostomids (which have a free-living planktonic stage) are limited to one or a few closely related hosts, despite most hosts co-occurring on the same reefs, many within physical contact of each other.
    BMC Evolutionary Biology 08/2014; 14(1):170.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Hypoxia-inducible factor (HIF) is a master regulator that mediates major changes in gene expression under hypoxic conditions. Though HIF family has been identified in many organisms, little is known about this family in schizothoracine fish.ResultsDuplicated hif-¿ (hif-1¿A, hif-1¿B, hif-2¿A, and hif-2¿B) genes were identified in schizothoracine fish. All the deduced HIF-¿s protein contains the main domains (bHLH-PAS, ODDD, and TAD), also found in humans. Evidence suggests a Cyprinidae-specific deletion, specifically, a conserved proline hydroxylation motif LxxLAP, in the NODD domain of schizothoracine fish HIF-1¿A. In addition, a schizothoracine-specific mutation was observed in the CODD domain of the specialized and highly specialized schizothoracine fish HIF-1¿B, which is the proline hydroxylation motif mutated into PxxLAP. Standard and stochastic branch-site codon model analysis indicated that only HIF-1¿B has undergone positive selection, which may have led to changes in function. To confirm this hypothesis, HIF-¿s tagged with Myc were transfected into HEK 293 T cells. Each HIF-1¿B was found to significantly upregulate luciferase activity under normoxic and hypoxic conditions, which indicated that the HIF-1¿B protein was more stable than other HIF-¿s.Conclusions All deduced HIF-¿s protein of schizothoracine fish contain important domains, like their mammalian counterparts, and each HIF-¿ is shorter than that of human. Our experiments reveal that teleost-specific duplicated hif-¿ genes played different roles under hypoxic conditions, and HIF-1¿B may be the most important regulator in the adaptation of schizothoracine fish to the environment of the Tibetan Plateau.
    BMC Evolutionary Biology 08/2014; 14(1):192.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Drosophila Dscam1 is a cell-surface protein that plays important roles in neural development and axon tiling of neurons. It is known that thousands of isoforms bind themselves through specific homophilic interactions, a process which provides the basis for cellular self-recognition. Detailed biochemical studies of specific isoforms strongly suggest that homophilic binding, i.e. the formation of homodimers by identical Dscam1 isomers, is of great importance for the self-avoidance of neurons. Due to experimental limitations, it is currently impossible to measure the homophilic binding affinities for all 19,000 potential isoforms.ResultsHere we reconstructed the DNA sequences of an ancestral Dscam form (which likely existed approximately 40¿~¿50 million years ago) using a comparative genomic approach. On the basis of this sequence, we established a working model to predict the self-binding affinities of all isoforms in both the current and the ancestral genome, using machine-learning methods. Detailed computational analysis was performed to compare the self-binding affinities of all isoforms present in these two genomes. Our results revealed that 1) isoforms containing newly derived variable domains exhibit higher self-binding affinities than those with conserved domains, and 2) current isoforms display higher self-binding affinities than their counterparts in the ancient genome. As thousands of Dscam isoforms are needed for the self-avoidance of the neuron, we propose that an increase in self-binding affinity provides the basis for the successful evolution of the arthropod brain.Conclusions Our data presented here provide an excellent model for future experimental studies of the binding behavior of Dscam isoforms. The results of our analysis indicate that evolution favored the rise of novel variable domains thanks to their higher self-binding affinities, rather than selection merely on the basis of simple expansion of isoform diversity, as that this particular selection process would have established the powerful mechanisms required for neuronal self-avoidance. Thus, we reveal here a new molecular mechanism for the successful evolution of arthropod brains.
    BMC Evolutionary Biology 08/2014; 14(1):186.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Branched polymers of glucose are universally used for energy storage in cells, taking the form of glycogen in animals, fungi, Bacteria, and Archaea, and of amylopectin in plants. Some enzymes involved in glycogen and amylopectin metabolism are similarly conserved in all forms of life, but some, interestingly, are not. In this paper we focus on the phylogeny of glycogen branching and debranching enzymes, respectively involved in introducing and removing of the ¿(1¿6) bonds in glucose polymers, bonds that provide the unique branching structure to glucose polymers.ResultsWe performed a large-scale phylogenomic analysis of branching and debranching enzymes in over 400 completely sequenced genomes, including more than 200 from eukaryotes. We show that branching and debranching enzymes can be found in all kingdoms of life, including all major groups of eukaryotes, and thus were likely to have been present in the last universal common ancestor (LUCA) but have been lost in seemingly random fashion in numerous single-celled eukaryotes. We also show how animal branching and debranching enzymes evolved from their LUCA ancestors by acquiring additional domains. Furthermore, we show that enzymes commonly perceived as orthologous, such as human branching enzyme GBE1 and E. coli branching enzyme GlgB, are in fact related by a gene duplication and consequently paralogous.Conclusions Despite being usually associated with animal liver glycogen and plant starch, energy storage in the form of branched glucose polymers is clearly an ancient process and has probably been present in the last universal common ancestor of all present life. The evolution of the enzymes enabling this form of energy storage is more complex than previously thought and illustrates the need for explicit phylogenomic analysis in the study of even seemingly ¿simple¿ metabolic enzymes. Patterns of conservation in the evolution of the glycogen/starch branching and debranching enzymes hint at some as yet unknown mechanisms, as mutations disrupting these patterns lead to a variety of genetic diseases in humans and other mammals.
    BMC Evolutionary Biology 08/2014; 14(1):183.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Vertebrate mitogenomes are economically organized and usually lack intergenic sequences other than the control region. Intergenic spacers located between the tRNAThr and tRNAPro genes (¿T-P spacers¿) have been observed in several taxa, including gadiform species, but information about their biological roles and putative functions is still lacking.ResultsSequence characterization of the complete European hake Merluccius merluccius mitogenome identified a complex T-P spacer ranging in size from 223¿532 bp. Further analyses of 32 gadiform species, representing 8 families and 28 genera, revealed the evolutionary preserved presence of T-P spacers across all taxa. Molecular complexity of the T-P spacers was found to be coherent with the phylogenetic relationships, supporting a common ancestral origin and gain of function during codfish evolution. Intraspecific variation of T-P spacer sequences was assessed in 225 Atlantic cod specimens and revealed 26 haplotypes. Pyrosequencing data representing the mito-transcriptome poly (A) fraction in Atlantic cod identified an abundant H-strand specific long noncoding RNA of about 375 nt. The T-P spacer corresponded to the 5¿ part of this transcript, which terminated within the control region in a tail-to-tail configuration with the L-strand specific transcript (the 7S RNA).Conclusions The T-P spacer is inferred to be evolutionary preserved in gadiform mitogenomes due to gain of function through a long noncoding RNA. We suggest that the T-P spacer adds stability to the H-strand specific long noncoding RNA by forming stable hairpin structures and additional protein binding sites.
    BMC Evolutionary Biology 08/2014; 14(1):182.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The genetic diversity of the human microbiome holds great potential for shedding light on the history of our ancestors. Helicobacter pylori is the most prominent example as its analysis allowed a fine-scale resolution of past migration patterns including some that could not be distinguished using human genetic markers. However studies of H. pylori require stomach biopsies, which severely limits the number of samples that can be analysed. By focussing on the house-keeping gene gdh (coding for the glucose-6-phosphate dehydrogenase), on the virulence gene gtf (coding for the glucosyltransferase) of mitis-streptococci and on the 16S-23S rRNA internal transcribed spacer (ITS) region of the Fusobacterium nucleatum/periodonticum-group we here tested the hypothesis that bacterial genes from human saliva have the potential for distinguishing human populations.
    BMC Evolutionary Biology 08/2014; 14(1):190.

Related Journals