BMC Developmental Biology Journal Impact Factor & Information

Publisher: BioMed Central

Journal description

BMC Developmental Biology publishes original research articles in all aspects of cellular, tissue-level and organismal aspects of development.

Current impact factor: 2.75

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 2.752
2012 Impact Factor 2.728
2011 Impact Factor 2.79
2010 Impact Factor 2.781
2009 Impact Factor 3.29
2008 Impact Factor 3.079
2007 Impact Factor 3.337
2006 Impact Factor 3.512
2005 Impact Factor 5.412

Impact factor over time

Impact factor

Additional details

5-year impact 2.92
Cited half-life 5.00
Immediacy index 0.28
Eigenfactor 0.01
Article influence 1.20
Website BMC Developmental Biology website
Other titles BioMed Central developmental biology, Developmental biology
ISSN 1471-213X
OCLC 45893894
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

BioMed Central

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Publisher's version/PDF may be used
    • Eligible UK authors may deposit in OpenDepot
    • Creative Commons Attribution License
    • Copy of License must accompany any deposit.
    • All titles are open access journals
    • 'BioMed Central' is an imprint of 'Springer Verlag (Germany)'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background During the fourth larval (L4) stage, vulval cells of C. elegans undergo extensive morphogenesis accompanied by changes in gene expression. This phase of vulval development, occurring after the well-studied induction of vulval cells, is not well understood but is potentially a useful context in which to study how a complex temporal sequence of events is regulated during development. However, a system for precisely describing different phases of vulval development in the L4 stage has been lacking. Results We defined ten sub-stages of L4 based on morphological criteria as observed using Nomarski microscopy (L4.0 ~ L4.9). Precise timing of each sub-stage at 20 °C was determined. We also re-examined the timing of expression for several gene expression markers, and correlated the sub-stages with the timing of other developmental events in the vulva and the uterus. Conclusions This scheme allows the developmental timing of an L4 individual to be determined at approximately one-hour resolution without the need to resort to time course experiments. These well-defined developmental stages will enable more precise description of gene expression and other developmental events.
    BMC Developmental Biology 06/2015; 15(1). DOI:10.1186/s12861-015-0076-7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HP1γ, a well-known regulator of gene expression, has been recently identified to be a target of Aurora A, a mitotic kinase which is important for both gametogenesis and embryogenesis. The purpose of this study was to define whether the Aurora A-HP1γ pathway supports cell division of gametes and/or early embryos, using western blot, immunofluorescence, immunohistochemistry, electron microscopy, shRNA-based knockdown, site-directed mutagenesis, and Affymetrix-based genome-wide expression profiles. We find that the form of HP1γ phosphorylated by Aurora A, P-Ser83 HP1γ, is a passenger protein, which localizes to the spermatozoa centriole and axoneme. In addition, disruption in this pathway causes centrosomal abnormalities and aberrations in cell division. Expression profiling of male germ cell lines demonstrates that HP1γ phosphorylation is critical for the regulation of mitosis-associated gene expression networks. In female gametes, we observe that P-Ser83-HP1γ is not present in meiotic centrosomes of M2 oocytes, but after syngamy, it becomes detectable during cleavage divisions, coinciding with early embryonic genome activation. These results support the idea that phosphorylation of HP1γ by Aurora A plays a role in the regulation of gene expression and mitotic cell division in cells from the sperm lineage and in early embryos. Combined, this data is relevant to better understanding the function of HP1γ in reproductive biology.
    BMC Developmental Biology 05/2015; 15(1):23. DOI:10.1186/s12861-015-0073-x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The mouse embryonic mandible comprises two types of tooth primordia in the cheek region: progressive tooth primordia of prospective functional teeth and rudimentary tooth primordia in premolar region - MS and R2. Mice lacking Sprouty genes develop supernumerary tooth in front of the lower M1 (first molar) primordium during embryogenesis. We focused on temporal-spatial dynamics of Sonic Hedgehog expression as a marker of early odontogenesis during supernumerary tooth development. Using mouse embryos with different dosages of Spry2 and Spry4 genes, we showed that during the normal development of M1 in the mandible the earlier appearing Shh signaling domain of the R2 bud transiently coexisted with the later appearing Shh expression domain in the early M1 primordium. Both domains subsequently fused together to form the typical signaling center representing primary enamel knot (pEK) of M1 germ at embryonic day (E) 14.5. However, in embryos with lower Spry2;Spry4 gene dosages, we observed a non-fusion of original R2 and M1 Shh signaling domains with consequent formation of a supernumerary tooth primordium from the isolated R2 bud. Our results bring new insight to the development of the first lower molar of mouse embryos and define simple tooth unit capable of individual development, as well as determine its influence on normal and abnormal development of the tooth row which reflect evolutionarily conserved tooth pattern. Our findings contribute significantly to existing knowledge about supernumerary tooth formation.
    BMC Developmental Biology 04/2015; 15(1):21. DOI:10.1186/s12861-015-0070-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Butterfly wing color patterns emerge as the result of a regular arrangement of scales produced by epithelial scale cells at the pupal stage. These color patterns and scale arrangements are coordinated throughout the wing. However, the mechanism by which the development of scale cells is controlled across the entire wing remains elusive. In the present study, we used pupal wings of the blue pansy butterfly, Junonia orithya, which has distinct eyespots, to examine the possible involvement of Ca(2+) waves in wing development. Here, we demonstrate that the developing pupal wing tissue of the blue pansy butterfly displayed spontaneous low-frequency Ca(2+) waves in vivo that propagated slowly over long distances. Some waves appeared to be released from the immediate peripheries of the prospective eyespot and discal spot, though it was often difficult to identify the specific origins of these waves. Physical damage, which is known to induce ectopic eyespots, led to the radiation of Ca(2+) waves from the immediate periphery of the damaged site. Thapsigargin, which is a specific inhibitor of Ca(2+)-ATPases in the endoplasmic reticulum, induced an acute increase in cytoplasmic Ca(2+) levels and halted the spontaneous Ca(2+) waves. Additionally, thapsigargin-treated wings showed incomplete scale development as well as other scale and color pattern abnormalities. We identified a novel form of Ca(2+) waves, spontaneous low-frequency slow waves, which travel over exceptionally long distances. Our results suggest that spontaneous Ca(2+) waves play a critical role in the coordinated development of scale arrangements and possibly in color pattern formation in butterflies.
    BMC Developmental Biology 03/2015; 15(1):17. DOI:10.1186/s12861-015-0067-8