BMC Developmental Biology (BMC DEV BIOL )


BMC Developmental Biology publishes original research articles in all aspects of cellular, tissue-level and organismal aspects of development.

  • Impact factor
    Show impact factor history
    Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    BMC Developmental Biology website
  • Other titles
    BioMed Central developmental biology, Developmental biology
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Glandular organs require the development of a correctly patterned epithelial tree. These arise by iterative branching: early branches have a stereotyped anatomy, while subsequent branching is more flexible, branches spacing out to avoid entanglement. Previous studies have suggested different genetic programs are responsible for these two classes of branches.ResultsHere, working with the urinary collecting duct tree of mouse kidneys, we show that the transition from the initial, stereotyped, wide branching to narrower later branching is independent from previous branching events but depends instead on the proximity of other branch tips. A simple computer model suggests that a repelling molecule secreted by branches can in principle generate a well-spaced tree that switches automatically from wide initial branch angles to narrower subsequent ones, and that co-cultured trees would distort their normal shapes rather than colliding. We confirm this collision-avoidance experimentally using organ cultures, and identify BMP7 as the repelling molecule.Conclusions We propose that self-avoidance, an intrinsically error-correcting mechanism, may be an important patterning mechanism in collecting duct branching, operating along with already-known mesenchyme-derived paracrine factors.
    BMC Developmental Biology 09/2014; 14(1):35.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background The switch from cartilage template to bone during endochondral ossification of the growth plate requires a dynamic and close interaction between cartilage and the developing vasculature. Vascular invasion of the primarily avascular hypertrophic chondrocyte zone brings chondroclasts, osteoblast- and endothelial precursor cells into future centres of ossification.Vascularization of human growth plates of polydactylic digits was studied by immunohistochemistry, confocal-laser-scanning-microscopy and RT-qPCR using markers specific for endothelial cells CD34 and CD31, smooth muscle cells ¿-SMA, endothelial progenitor cells CD133, CXCR4, VEGFR-2 and mesenchymal progenitor cells CD90 and CD105. In addition, morphometric analysis was performed to quantify RUNX2+ and DLX5+ hypertrophic chondrocytes, RANK+ chondro- and osteoclasts, and CD133+ progenitors in different zones of the growth plate.ResultsNew vessels in ossification centres were formed by sprouting of CD34+ endothelial cells that did not co-express the mature endothelial cell marker CD31. These immature vessels in the growth plate showed no abluminal coverage with ¿-SMA+ smooth muscle cells, but in their close proximity single CD133+ precursor cells were found that did not express VEGFR-2, a marker for endothelial lineage commitment. In periosteum and in the perichondrial groove of Ranvier that harboured CD90+/CD105+ chondro-progenitors, in contrast, mature vessels were found stabilized by ¿-SMA+ smooth muscle cells.Conclusion Vascularization of ossification centres of the growth plate was mediated by sprouting of capillaries coming from the bone collar or by intussusception rather than by de-novo vessel formation involving endothelial progenitor cells. Vascular invasion of the joint anlage was temporally delayed compared to the surrounding joint tissue.
    BMC Developmental Biology 08/2014; 14(1):36.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Members of the Semaphorin 3 family (Sema3s) influence the development of the central nervous system, and some are implicated in regulating aspects of visual system development. However, we lack information about the timing of expression of the Sema3s with respect to different developmental epochs in the mammalian visual system. In this time-course study in the rat, we document for the first time changes in the expression of RNAs for the majority of Class 3 Semaphorins (Sema3s) and their receptor components during the development of the rat retina and superior colliculus (SC).ResultsDuring retinal development, transcript levels changed for all of the Sema3s examined, as well as Nrp2, Plxna2, Plxna3, and Plxna4a. In the SC there were also changes in transcript levels for all Sema3s tested, as well as Nrp1, Nrp2, Plxna1, Plxna2, Plxna3, and Plxna4a. These changes correlate with well-established epochs, and our data suggest that the Sema3s could influence retinal ganglion cell (RGC) apoptosis, patterning and connectivity in the maturing retina and SC, and perhaps guidance of RGC and cortical axons in the SC. Functionally we found that SEMA3A, SEMA3C, SEMA3E, and SEMA3F proteins collapsed purified postnatal day 1 RGC growth cones in vitro. Significantly this is a developmental stage when RGCs are growing into and within the SC and are exposed to Sema3 ligands.Conclusion These new data describing the overall temporal regulation of Sema3 expression in the rat retina and SC provide a platform for further work characterising the functional impact of these proteins on the development and maturation of mammalian visual pathways.
    BMC Developmental Biology 07/2014; 14(1):34.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background The 14-3-3 (YWHA) proteins are highly conserved in higher eukaryotes, participate in various cellular signaling pathways including cell cycle regulation, development and growth. Our previous studies demonstrated that 14-3-3¿ (YWHAE) is responsible for maintaining prophase | arrest in mouse oocyte. However, roles of 14-3-3¿ in the mitosis of fertilized mouse eggs have remained unclear. Here, we showed that 14-3-3¿ interacts and cooperates with CDC25B phosphorylated at Ser321 regulating G2/M transition of mitotic progress of fertilized mouse eggs.ResultsDisruption of 14-3-3¿ expression by RNAi prevented normal G2/M transition by inhibition of MPF activity and leaded to the translocation of CDC25B into the nucleus from the cytoplasm. Overexpression of 14-3-3¿-WT and unphosphorylatable CDC25B mutant (CDC25B-S321A) induced mitotic resumption in dbcAMP-arrested eggs. In addition, we examined endogenous and exogenous distribution of 14-3-3¿ and CDC25B. Endogenous 14-3-3¿ and CDC25B were co-localized primarily in the cytoplasm at the G1, S, early G2 and M phases whereas CDC25B was found to accumulate in the nucleus at the late G2 phase. Upon coexpression with RFP¿14-3-3¿, GFP¿CDC25B¿WT and GFP¿CDC25B¿S321A were predominantly cytoplasmic at early G2 phase and then GFP¿CDC25B¿S321A moved to the nucleus whereas CDC25B-WT signals were observed in the cytoplasm without nucleus accumulation at late G2 phase at presence of dbcAMP.Conclusions Our data indicate that 14-3-3¿ is required for the mitotic entry in the fertilized mouse eggs. 14-3-3¿ is primarily responsible for sequestering the CDC25B in cytoplasm and 14-3-3¿ binding to CDC25B-S321 phosphorylated by PKA induces mitotic arrest at one-cell stage by inactivation of MPF in fertilized mouse eggs.
    BMC Developmental Biology 07/2014; 14(1):33.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The retinal pigmented epithelium (RPE) is an rounded shaped structure in almost all lizards. In the New World dwarf geckos, this structure shows an unusual morphology. In addition to this ocular character, we describe notable differences in the development of these geckos in comparison with available developmental staging tables for other geckos and squamate reptiles.
    BMC Developmental Biology 06/2014; 14(1):29.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The developing vertebrate hindbrain is transiently segmented into rhombomeres by a process requiring Hox activity. Hox genes control specification of rhombomere fates, as well as the stereotypic differentiation of rhombomere-specific neuronal populations. Accordingly, germ line disruption of the paralog group 1 (PG1) Hox genes Hoxa1 and Hoxb1 causes defects in hindbrain segmentation and neuron formation in mice. However, antisense-mediated interference with zebrafish hoxb1a and hoxb1b (analogous to murine Hoxb1 and Hoxa1, respectively) produces phenotypes that are qualitatively and quantitatively distinct from those observed in the mouse. This suggests that PG1 Hox genes may have species-specific functions, or that anti-sense mediated interference may not completely inactivate Hox function in zebrafish.
    BMC Developmental Biology 06/2014; 14(1):25.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The DNA damage-mediated cell cycle checkpoint is an essential mechanism in the DNA damage response (DDR). During embryonic development, the characteristics of cell cycle and DNA damage checkpoint evolve from an extremely short G1 cell phase and lacking G1 checkpoint to lengthening G1 phase and the establishment of the G1 checkpoint. However, the regulatory mechanisms governing these transitions are not well understood. In this study, pregnant mice were exposed to ionizing radiation (IR) to induce DNA damage at different embryonic stages; the kinetics and mechanisms of the establishment of DNA damage-mediated G1 checkpoint in embryonic liver were investigated.
    BMC Developmental Biology 05/2014; 14(1):23.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The purple sea urchin, Strongylocentrotus purpuratus, has long been the focus of developmental and ecological studies, and its recently-sequenced genome has spawned a diversity of functional genomics approaches. S. purpuratus has an indirect developmental mode with a pluteus larva that transforms after 1-3 months in the plankton into a juvenile urchin. Compared to insects and frogs, mechanisms underlying the correspondingly dramatic metamorphosis in sea urchins remain poorly understood. In order to take advantage of modern techniques to further our understanding of juvenile morphogenesis, organ formation, metamorphosis and the evolution of the pentameral sea urchin body plan, it is critical to assess developmental progression and rate during the late larval phase. This requires a staging scheme that describes developmental landmarks that can quickly and consistently be used to identify the stage of individual living larvae, and can be tracked during the final two weeks of larval development, as the juvenile is forming.
    BMC Developmental Biology 05/2014; 14(1):22.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bone marrow derived mesenchymal stem cells (bmMSCs) are multipotent cells that can differentiate into diverse cell types, including cardiomyocytes. BmMSC-based transplantation is capable of repairing acute and chronic myocardial infarction. Prior to the transplantation, MSCs are usually induced in vitro by biological reagents and chemicals for directional differentiation. Transforming growth factor beta (TGF-beta) is one of the most commonly used biological reagents for induction of cardiomyocyte differentiation of bmMSCs. Previous studies have shown that TGF-beta induces senescence in several cell types. However, whether TGF-beta affects senescence of bmMSCs has not been elucidated. The goal of this study was to investigate the effect of TGF-beta1 on senescence of bmMSCs and the underlying mechanisms.
    BMC Developmental Biology 05/2014; 14(1):21.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Circadian clocks have been postulated to regulate development time in several species of insects including fruit flies Drosophila melanogaster. Previously we have reported that selection for faster pre-adult development reduces development time (by ~19 h or ~11%) and clock period (by ~0.5 h), suggesting a role of circadian clocks in the regulation of development time in D. melanogaster. We reasoned that these faster developing populations could serve as a model to examine stage-specific interaction of circadian clocks and developmental events with the environmental light/dark (LD) conditions. We assayed the duration of three pre-adult stages in the faster developing (FD) and control (BD) populations under a variety of light regimes that are known to modulate circadian clocks and pre-adult development time of Drosophila to examine the role of circadian clocks in the timing of pre-adult developmental stages.
    BMC Developmental Biology 05/2014; 14(1):19.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hox genes encode master regulators of regional fate specification during early metazoan development. Much is known about the initiation and regulation of Hox gene expression in Drosophila and vertebrates, but less is known in the non-arthropod invertebrate model system, C. elegans. The C. elegans Hox gene lin-39 is required for correct fate specification in the midbody region, including the Vulval Precursor Cells (VPCs). To better understand lin-39 regulation and function, we aimed to identify transcription factors necessary for lin-39 expression in the VPCs, and in particular sought factors that initiate lin-39 expression in the embryo.
    BMC Developmental Biology 05/2014; 14(1):17.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The miniature pig provides an excellent experimental model for tooth morphogenesis because its diphyodont and heterodont dentition resembles that of humans. However, little information is available on the process of tooth development or the exact molecular mechanisms controlling tooth development in miniature pigs or humans. Thus, the analysis of gene expression related to each stage of tooth development is very important RESULTS: In our study, after serial sections were made, the development of the crown of the miniature pigs' mandibular deciduous molar could be divided into five main phases: dental lamina stage (E33-E35), bud stage (E35-E40), cap stage (E40-E50), early bell stage (E50-E60), and late bell stage (E60-E65). Total RNA was isolated from the tooth germ of miniature pig embryos at E35, E45, E50, and E60, and a cDNA library was constructed. Then, we identified cDNA sequences on a large scale screen for cDNA profiles in the developing mandibular deciduous molars (E35, E45, E50, and E60) of miniature pigs using Illumina Solexa deep sequencing. Microarray assay was used to detect the expression of genes. Lastly, through Unigene sequence analysis and cDNA expression pattern analysis at E45 and E60, we found that 12 up-regulated and 15 down-regulated genes during the four periods are highly conserved genes homologous with known Homo sapiens genes. Furthermore, there were 6 down-regulated and 2 up-regulated genes in the miniature pig that were highly homologous to Homo sapiens genes compared with those in the mouse. Our results not only identify the specific transcriptome and cDNA profile in developing mandibular deciduous molars of the miniature pig, but also provide useful information for investigating the molecular mechanism of tooth development in the miniature pig.
    BMC Developmental Biology 04/2014; 14(1):16.

Related Journals