BMC Developmental Biology (BMC DEV BIOL)

Publisher: BioMed Central

Journal description

BMC Developmental Biology publishes original research articles in all aspects of cellular, tissue-level and organismal aspects of development.

Current impact factor: 2.75

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 2.752
2012 Impact Factor 2.728
2011 Impact Factor 2.79
2010 Impact Factor 2.781
2009 Impact Factor 3.29
2008 Impact Factor 3.079
2007 Impact Factor 3.337
2006 Impact Factor 3.512
2005 Impact Factor 5.412

Impact factor over time

Impact factor
Year

Additional details

5-year impact 2.92
Cited half-life 5.00
Immediacy index 0.28
Eigenfactor 0.01
Article influence 1.20
Website BMC Developmental Biology website
Other titles BioMed Central developmental biology, Developmental biology
ISSN 1471-213X
OCLC 45893894
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

BioMed Central

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Publisher's version/PDF may be used
    • Eligible UK authors may deposit in OpenDepot
    • Creative Commons Attribution License
    • Copy of License must accompany any deposit.
    • All titles are open access journals
    • 'BioMed Central' is an imprint of 'Springer Verlag (Germany)'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Drosophila larvae have been used as a model to study to genetic and cellular circuitries modulating behaviors. One of the challenges in behavioral study is the quantification of complex phenotypes such as locomotive behaviors. Experimental capability can be greatly enhanced by an automatic single-animal tracker that records an animal at a high resolution for an extended period, and analyzes multiple behavioral parameters. Here we present MaggotTracker, a single-animal tracking system for Drosophila larval locomotion analysis. This system controls the motorized microscope stage while taking a video, so that the animal remains in the viewing center. It then reduces the animal to 13 evenly distributed points along the midline, and computes over 20 parameters evaluating the shape, peristalsis movement, stamina, and track of the animal. To demonstrate its utility, we applied MaggotTracker to analyze both wild-type and mutant animals to identify factors affecting locomotive behaviors. Each animal was tracked for four minutes. Our analysis on Canton-S third-instar larvae revealed that the distance an animal travelled was correlated to its striding speed rather than the percentage of time the animal spent striding, and that the striding speed was correlated to both the distance and the duration of one stride. Sexual dimorphism was observed in body length but not in locomotive parameters such as speed. Locomotive parameters were affected by animal developmental stage and the crawling surface. No significant changes in movement speed were detected in mutants of circadian genes such as period (per), timeout, and timeless (tim). The MaggotTracker analysis showed that ether a go-go (eag), Shaker (Sh), slowpoke (slo), and dunce (dnc) mutant larvae had severe phenotypes in multiple locomotive parameters such as stride distance and speed, consistent with their function in neuromuscular junctions. Further, the phenotypic patterns of the K(+) channel genes eag, Sh and slo are highly similar. These results showed that MaggotTracker is an efficient tool for automatic phenotyping. The MaggotTracker software as well as the data presented here can be downloaded from our open-access site www.WormLoco.org/Mag .
    BMC Developmental Biology 12/2015; 15(1). DOI:10.1186/s12861-015-0062-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: The developing eye receives blood supply from two vascular systems, the intraocular hyaloid system and the superficial choroidal vessels. In zebrafish, a highly stereotypic and simple set of vessels develops on the surface of the eye prior to development of choroidal vessels. The origins and formation of this so-called superficial system have not been described. We have analyzed the development of superficial vessels by time-lapse imaging and identified their origins by photoconversion experiments in kdrl:Kaede transgenic embryos. We show that the entire superficial system is derived from a venous origin, and surprisingly, we find that the hyaloid system has, in addition to its previously described arterial origin, a venous origin for specific vessels. Despite arising solely from a vein, one of the vessels in the superficial system, the nasal radial vessel (NRV), appears to acquire an arterial identity while growing over the nasal aspect of the eye and this happens in a blood flow-independent manner. Our results provide a thorough analysis of the early development and origins of zebrafish ocular vessels and establish the superficial vasculature as a model for studying vascular patterning in the context of the developing eye.
    BMC Developmental Biology 03/2015; 15(1):18. DOI:10.1186/s12861-015-0066-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Butterfly wing color patterns emerge as the result of a regular arrangement of scales produced by epithelial scale cells at the pupal stage. These color patterns and scale arrangements are coordinated throughout the wing. However, the mechanism by which the development of scale cells is controlled across the entire wing remains elusive. In the present study, we used pupal wings of the blue pansy butterfly, Junonia orithya, which has distinct eyespots, to examine the possible involvement of Ca(2+) waves in wing development. Here, we demonstrate that the developing pupal wing tissue of the blue pansy butterfly displayed spontaneous low-frequency Ca(2+) waves in vivo that propagated slowly over long distances. Some waves appeared to be released from the immediate peripheries of the prospective eyespot and discal spot, though it was often difficult to identify the specific origins of these waves. Physical damage, which is known to induce ectopic eyespots, led to the radiation of Ca(2+) waves from the immediate periphery of the damaged site. Thapsigargin, which is a specific inhibitor of Ca(2+)-ATPases in the endoplasmic reticulum, induced an acute increase in cytoplasmic Ca(2+) levels and halted the spontaneous Ca(2+) waves. Additionally, thapsigargin-treated wings showed incomplete scale development as well as other scale and color pattern abnormalities. We identified a novel form of Ca(2+) waves, spontaneous low-frequency slow waves, which travel over exceptionally long distances. Our results suggest that spontaneous Ca(2+) waves play a critical role in the coordinated development of scale arrangements and possibly in color pattern formation in butterflies.
    BMC Developmental Biology 03/2015; 15(1):17. DOI:10.1186/s12861-015-0067-8
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Tissue fixation is crucial for preserving the morphology of biological structures and cytological details to prevent postmortem degradation and autolysis. Improper fixation conditions could lead to artifacts and thus incorrect conclusions in immunofluorescence or histology experiments. To resolve reported structural anomalies with respect to Drosophila photoreceptor cell organization we developed and utilized a combination of live imaging and fixed samples to investigate the exact biogenesis and to identify the underlying source for the reported discrepancies in structure.ResultsWe found that piperazine-N,N¿-bis(ethanesulfonic acid) (PIPES) and 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), two zwitterionic buffers commonly used in tissue fixation, can cause severe lumen and cell morphological defects in Drosophila pupal and adult retina; the inter-rhabdomeral lumen becomes dilated and the photoreceptor cells are significantly reduced in size. Correspondingly, the localization pattern of Eyes shut (EYS), a luminal protein, is severely altered. In contrast, tissues fixed in the phosphate buffered saline (PBS) buffer results in lumen and cell morphologies that are consistent with live imaging.Conclusions We suggest that PIPES and HEPES buffers should be utilized with caution for fixation when examining the interplay between cells and their extracellular environment, especially in Drosophila pupal and adult retina research.
    BMC Developmental Biology 02/2015; 15(1):10. DOI:10.1186/s12861-015-0056-y
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background We have revealed that the type II diacylglycerol kinases (DGKs) ¿, ¿ and ¿ were expressed in the testis and ovary. However, these enzymes¿ functions in the reproductive organs remain unknown.ResultsIn this study, we first identified the expression sites of type II DGKs in the mouse reproductive organs in detail. Reverse transcription-polymerase chain reaction and Western blotting confirmed that DGK¿2 (splicing variant 2) but not DGK¿1 (splicing variant 1) and DGK¿ were expressed in the testis, ovary and uterus. DGK¿1 (splicing variant 1) but not DGK¿2 (splicing variant 2) was strongly detected in the ovary and uterus. Interestingly, we found that a new alternative splicing product of the DGK¿ gene, DGK¿3, which lacks exon 26 encoding 31 amino acid residues, was expressed only in the testis. Moreover, we investigated the distribution of type II DGKs in the testis, ovary and uterus through in situ hybridization. DGK¿2 was distributed in the primary spermatocytes of the testis and ovarian follicles. DGK¿1 was distributed in the oviductal epithelium of the ovary and the luminal epithelium of the uterus. Intriguingly, DGK¿3 was strongly expressed in the secondary spermatocytes and round spermatids of the testis. DGK¿ was distributed in the primary and secondary spermatocyte of the testis.Conclusion These results indicate that the expression patterns of the type II DGK isoforms ¿2, ¿1, ¿3 and ¿ differ from each other, suggesting that these DGK isoforms play specific roles in distinct compartments and developmental stages of the reproductive organs, especially in the processes of spermatogenesis and oocyte maturation.
    BMC Developmental Biology 01/2015; 15(1):6. DOI:10.1186/s12861-015-0055-z
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Dietary interventions during pregnancy alter offspring fitness. We have shown mouse maternal low protein diet fed exclusively for the preimplantation period (Emb-LPD) before return to normal protein diet (NPD) for the rest of gestation, is sufficient to cause adult offspring cardiovascular and metabolic disease. Moreover, Emb-LPD blastocysts sense altered nutrition within the uterus and activate compensatory cellular responses including stimulated endocytosis within extra-embryonic trophectoderm and primitive endoderm (PE) lineages to protect fetal growth rate. However, these responses associate with later disease. Here, we investigate epigenetic mechanisms underlying nutritional programming of PE that may contribute to its altered phenotype, stabilised during subsequent development. We use embryonic stem (ES) cell lines established previously from Emb-LPD and NPD blastocysts that were differentiated into embryoid bodies (EBs) with outer PE-like layer.ResultsEmb-LPD EBs grow to a larger size than NPD EBs and express reduced Gata6 transcription factor (regulator of PE differentiation) at mRNA and protein levels, similar to Emb-LPD PE derivative visceral yolk sac tissue in vivo in later gestation. We analysed histone modifications at the Gata6 promoter in Emb-LPD EBs using chromatin immunoprecipitation assay. We found significant reduction in histone H3 and H4 acetylation and RNA polymerase II binding compared with NPD EBs, all markers of reduced transcription. Other histone modifications, H3K4Me2, H3K9Me3 and H3K27Me3, were unaltered. A similar but generally non-significant histone modification pattern was found on the Gata4 promoter. Consistent with these changes, histone deacetylase Hdac-1, but not Hdac-3, gene expression was upregulated in Emb-LPD EBs.Conclusions First, these data demonstrate ES cells and EBs retain and propagate nutritional programming adaptations in vitro, suitable for molecular analysis of mechanisms, reducing animal use. Second, they reveal maternal diet induces persistent changes in histone modifications to regulate Gata6 expression and PE growth and differentiation that may affect lifetime health.
    BMC Developmental Biology 01/2015; 15(1):3. DOI:10.1186/s12861-015-0053-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background In society, there is a clear need to improve the success rate of techniques to restore fertility. Therefore a deeper knowledge of the dynamics of the complex molecular environment that regulates human gametogenesis and (early) folliculogenesis in vivo is necessary. Here, we have studied these processes focusing on the formation of the follicular basement membrane (BM) in vivo. Results The distribution of the main components of the extracellular matrix (ECM) collagen IV, laminin and fibronectin by week 10 of gestation (W10) in the ovarian cortex revealed the existence of ovarian cords and of a distinct mesenchymal compartment, resembling the organization in the male gonads. By W17, the first primordial follicles were assembled individually in that (cortical) mesenchymal compartment and were already encapsulated by a BM of collagen IV and laminin, but not fibronectin. In adults, in the primary and secondary follicles, collagen IV, laminin and to a lesser extent fibronectin were prominent in the follicular BM. Conclusions The ECM-molecular niche compartimentalizes the female gonads from the time of germ cell colonization until adulthood. This knowledge may contribute to improve methods to recreate the environment needed for successful folliculogenesis in vitro and that would benefit a large number of infertility patients.
    BMC Developmental Biology 01/2015; 15(4). DOI:10.1186/s12861-015-0054-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Bioelectric phenomena have been found to exert influence on various developmental and regenerative processes. Little is known about their possible functions and the cellular mechanisms by which they might act during Drosophila oogenesis. In developing follicles, characteristic extracellular current patterns and membrane-potential changes in oocyte and nurse cells have been observed that partly depend on the exchange of protons, potassium ions and sodium ions. These bioelectric properties have been supposed to be related to various processes during oogenesis, e. g. pH-regulation, osmoregulation, cell communication, cell migration, cell proliferation, cell death, vitellogenesis and follicle growth. Analysing in detail the spatial distribution and activity of the relevant ion-transport mechanisms is expected to elucidate the roles that bioelectric phenomena play during oogenesis.ResultsTo obtain an overview of bioelectric patterning along the longitudinal and transversal axes of the developing follicle, the spatial distributions of membrane potentials (Vmem), intracellular pH (pHi) and various membrane-channel proteins were studied systematically using fluorescent indicators, fluorescent inhibitors and antisera. During mid-vitellogenic stages 9 to 10B, characteristic, stage-specific Vmem-patterns in the follicle-cell epithelium as well as anteroposterior pHi-gradients in follicle cells and nurse cells were observed. Corresponding distribution patterns of proton pumps (V-ATPases), voltage-dependent L-type Ca2+-channels, amiloride-sensitive Na+-channels and Na+,H+-exchangers (NHE) and gap-junction proteins (innexin 3) were detected. In particular, six morphologically distinguishable follicle-cell types are characterized on the bioelectric level by differences concerning Vmem and pHi as well as specific compositions of ion channels and carriers. Striking similarities between Vmem-patterns and activity patterns of voltage-dependent Ca2+-channels were found, suggesting a mechanism for transducing bioelectric signals into cellular responses. Moreover, gradients of electrical potential and pH were observed within single cells.Conclusions Our data suggest that spatial patterning of Vmem, pHi and specific membrane-channel proteins results in bioelectric signals that are supposed to play important roles during oogenesis, e. g. by influencing spatial coordinates, regulating migration processes or modifying the cytoskeletal organization. Characteristic stage-specific changes of bioelectric activity in specialized cell types are correlated with various developmental processes.
    BMC Developmental Biology 01/2015; 15(1):1. DOI:10.1186/s12861-015-0051-3