Parasitology

Publisher: Cambridge University Press (CUP)

Journal description

Current impact factor: 2.35

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 2.35
2012 Impact Factor 2.355
2011 Impact Factor 2.961
2010 Impact Factor 2.522
2009 Impact Factor 1.607
2008 Impact Factor 2.071
2007 Impact Factor 2.081
2006 Impact Factor 1.786
2005 Impact Factor 1.703
2004 Impact Factor 1.685
2003 Impact Factor 1.821
2002 Impact Factor 1.828
2001 Impact Factor 2.114
2000 Impact Factor 1.944
1999 Impact Factor 1.868
1998 Impact Factor 1.867
1997 Impact Factor 2.206

Impact factor over time

Impact factor
Year

Additional details

5-year impact 2.46
Cited half-life 0.00
Immediacy index 0.72
Eigenfactor 0.01
Article influence 0.72
ISSN 1469-8161
OCLC 166102937
Material type Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Cambridge University Press (CUP)

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's Pre-print on author's personal website, departmental website, social media websites, institutional repository, non-commercial subject-based repositories, such as PubMed Central, Europe PMC or arXiv
    • Author's post-print on author's personal website on acceptance of publication
    • Author's post-print on departmental website, institutional repository, non-commercial subject-based repositories, such as PubMed Central, Europe PMC or arXiv, after a 6 months embargo
    • Publisher's version/PDF cannot be used
    • Published abstract may be deposited
    • Pre-print to record acceptance for publication
    • Publisher copyright and source must be acknowledged with set statement, for deposit of Authors Post-print or Publisher's version/PDF
    • Must link to publisher version
    • Publisher last reviewed on 07/10/2014
    • This policy is an exception to the default policies of 'Cambridge University Press (CUP)'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Dicyemids, poorly known parasites of benthic cephalopods, are one of the few phyla in which mitochondrial (mt) genome architecture departs from the typical ~16 kb circular metazoan genome. In addition to a putative circular genome, a series of mt minicircles that each comprises the mt encoded units (I-III) of the cytochrome c oxidase complex have been reported. Whether the structure of the mt minicircles is a consistent feature among dicyemid species is unknown. Here we analyse the complete cytochrome c oxidase subunit I (COI) minicircle molecule, containing the COI gene and an associated non-coding region (NCR), for ten dicyemid species, allowing for first time comparisons between species of minicircle architecture, NCR function and inferences of minicircle replication. Divergence in COI nucleotide sequences between dicyemid species was high (average net divergence = 31·6%) while within species diversity was lower (average net divergence = 0·2%). The NCR and putative 5' section of the COI gene were highly divergent between dicyemid species (average net nucleotide divergence of putative 5' COI section = 61·1%). No tRNA genes were found in the NCR, although palindrome sequences with the potential to form stem-loop structures were identified in some species, which may play a role in transcription or other biological processes.
    Parasitology 04/2015; DOI:10.1017/S0031182015000384
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Hematodinium is a parasitic dinoflagellate of numerous crustacean species, including the economically important Atlantic snow crab, Chionoecetes opilio. The parasite was cultured in vitro in modified Nephrops medium at 0°C and a partial characterization of the life stages was accomplished using light and transmission electron microscopy (TEM). In haemolymph from heavily infected snow crabs two life stages were detected; amoeboid trophonts and sporonts. During in vitro cultivation, several Hematodinium sp. life stages were observed: trophonts, clump colonies, sporonts, arachnoid sporonts, sporoblasts and dinospores. Cultures initiated with sporonts progressed to motile dinospores; however, those initiated with amoeboid trophonts proliferated, but did not progress or formed schizont-like stages which were senescent artefacts. Plasmodial stages were associated with both trophonts and sporonts and could be differentiated by the presence of trichocysts on TEM. Macrodinospores were observed but not microdinospores; likely due to the low number of Hematodinium sp. cultures that progressed to the dinospore stage. No early life stages including motile filamentous trophonts or gorgonlocks were observed as previously noted in Hematodinium spp. from other crustacean hosts. All Hematodinium sp. life stages contained autofluorescent, membrane-bound electron dense granules that appeared to degranulate or be expelled from the cell during in vitro cultivation.
    Parasitology 04/2015; 142(4):598-611. DOI:10.1017/S0031182014001656
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cyclosporin A (CsA) specifically inhibits the mitochondrial permeability transition pore (mPTP). Opening of the mPTP, which is triggered by high levels of matrix [Ca2+] and/or oxidative stress, leads to mitochondrial dysfunction and thus to cell death by either apoptosis or necrosis. In the present study, we analysed the response of Trypanosoma cruzi epimastigote parasites to oxidative stress with 5 mm H2O2, by studying several features related to programmed cell death and the effects of pre-incubation with 1 μ m of CsA. We evaluated TcPARP cleavage, DNA integrity, cytochrome c translocation, Annexin V/propidium iodide staining, reactive oxygen species production. CsA prevented parasite oxidative stress damage as it significantly inhibited DNA degradation, cytochrome c translocation to cytosol and TcPARP cleavage. The calcein-AM/CoCl2 assay, used as a selective indicator of mPTP opening in mammals, was also performed in T. cruzi parasites. H2O2 treatment decreased calcein fluorescence, but this decline was partially inhibited by pre-incubation with CsA. Our results encourage further studies to investigate if there is a mPTP-like pore and a mitochondrial cyclophilin involved in this protozoan parasite.
    Parasitology 03/2015; DOI:10.1017/S0031182015000232
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new name Sarcocystis chloropusae is proposed for a parasite previously found in two of 25 common moorhen (Gallinula chloropus) from Brolos Lake, Egypt. Sarcocysts were microscopic, up to 650 μm long, the cyst wall was up to 4·5 μm thick, and contained villar protrusions that were up to 4 μm long and up to 2 μm wide. The villar protrusions were crowded, contained vesicles but lacked microtubules. The ground substance layer was smooth. The bradyzoites were up to 12 μm long and up to 2 μm wide. Molecular characterization and phylogenetic analysis of the (ITS-1) supported the conclusion that the Sarcocystis in G. chloropus is a distinct species.
    Parasitology 03/2015; DOI:10.1017/S0031182015000293
  • [Show abstract] [Hide abstract]
    ABSTRACT: The histone chaperone SET/TAF-Iβ is implicated in processes of chromatin remodelling and gene expression regulation. It has been associated with the control of developmental processes, but little is known about its function in helminth parasites. In Mesocestoides corti, a partial cDNA sequence related to SET/TAF-Iβ was isolated in a screening for genes differentially expressed in larvae (tetrathyridia) and adult worms. Here, the full-length coding sequence of the M. corti SET/TAF-Iβ gene was analysed and the encoded protein (McSET/TAF) was compared with orthologous sequences, showing that McSET/TAF can be regarded as a SET/TAF-Iβ family member, with a typical nucleosome-assembly protein (NAP) domain and an acidic tail. The expression patterns of the McSET/TAF gene and protein were investigated during the strobilation process by RT-qPCR, using a set of five reference genes, and by immunoblot and immunofluorescence, using monospecific polyclonal antibodies. A gradual increase in McSET/TAF transcripts and McSET/TAF protein was observed upon development induction by trypsin, demonstrating McSET/TAF differential expression during strobilation. These results provided the first evidence for the involvement of a protein from the NAP family of epigenetic effectors in the regulation of cestode development.
    Parasitology 03/2015; DOI:10.1017/S003118201500030X
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schistosoma japonicum, a human blood fluke, causes a parasitic disease affecting millions of people in Asia. Thioredoxin-glutathione system of S. japonicum plays a critical role in maintaining the redox balance in parasite, which is a potential target for development of novel antischistosomal agents. Here we cloned the gene of S. japonicum thioredoxin (SjTrx), expressed and purified the recombinant SjTrx in Escherichia coli. Functional assay shows that SjTrx catalyses the dithiothreitol (DTT) reduction of insulin disulphide bonds. The coupling assay of SjTrx with its endogenous reductase, thioredoxin glutathione reductase from S. japonicum (SjTGR), supports its biological function to maintain the redox homeostasis in the cell. Furthermore, the crystal structure of SjTrx in the oxidized state was determined at 2·0 Å resolution, revealing a typical architecture of thioredoxin fold. The structural information of SjTrx provides us important clues for understanding the maintenance function of redox homeostasis in S. japonicum and pathogenesis of this chronic disease.
    Parasitology 03/2015; DOI:10.1017/S0031182015000244
  • [Show abstract] [Hide abstract]
    ABSTRACT: Parasite-host interactions mediated by cell surface proteins have been implicated as a critical step in infections caused by the microsporidian Nosema bombycis. Such cell surface proteins are considered as promising diagnostic markers and targets for drug development. However, little research has specifically addressed surface proteome identification in microsporidia due to technical barriers. Here, a combined strategy was developed to separate and identify the surface proteins of N. bombycis. Briefly, following (1) biotinylation of the spore surface, (2) extraction of total proteins with an optimized method and (3) streptavidin affinity purification of biotinylated proteins, 22 proteins were identified based on LC-MS/MS analysis. Among them, 5 proteins were confirmed to be localized on the surface of N. bombycis. A total of 8 proteins were identified as hypothetical extracellular proteins, whereas 7 other hypothetical proteins had no available function annotation. Furthermore, a protein with a molecular weight of 18·5 kDa was localized on the spore surface by western blotting and immunofluorescence analysis, even though it was predicted to be a nuclear protein by bioinformatics. Collectively, our work provides an effective strategy for isolating microsporidian surface protein components for both drug target identification and further diagnostic research on microsporidian disease control.
    Parasitology 03/2015; DOI:10.1017/S0031182015000190
  • [Show abstract] [Hide abstract]
    ABSTRACT: Finch trichomonosis, caused by Trichomonas gallinae, emerged in the Canadian Maritime provinces in 2007 and has since caused ongoing mortality in regional purple finch (Carpodacus purpureus) and American goldfinch (Carduelis tristis) populations. Trichomonas gallinae was isolated from (1) finches and rock pigeons (Columbia livia) submitted for post-mortem or live-captured at bird feeding sites experiencing trichomonosis mortality; (2) bird seed at these same sites; and (3) rock pigeons live-captured at known roosts or humanely killed. Isolates were characterized using internal transcribed spacer (ITS) region and iron hydrogenase (Fe-hyd) gene sequences. Two distinct ITS types were found. Type A was identical to the UK finch epidemic strain and was isolated from finches and a rock pigeon with trichomonosis; apparently healthy rock pigeons and finches; and bird seed at an outbreak site. Type B was obtained from apparently healthy rock pigeons. Fe-hyd sequencing revealed six distinct subtypes. The predominant subtype in both finches and the rock pigeon with trichomonosis was identical to the UK finch epidemic strain A1. Single nucleotide polymorphisms in Fe-hyd sequences suggest there is fine-scale variation amongst isolates and that finch trichomonosis emergence in this region may not have been caused by a single spill-over event.
    Parasitology 03/2015; DOI:10.1017/S0031182015000281
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of aromatic plants and their essential oils for ectoparasite treatment is a field of growing interest. Several species of birds regularly introduce aromatic herbs into their nests putatively to reduce parasites. The behaviour is most often seen in cavity nesting birds and after nest building has finished. The plants are included in a non-structural manner and are often strongly aromatic. Various different hypotheses have been proposed regarding the function of this behaviour; from the plants altering some non-living factor in the nest (crypsis, water loss and insulation hypotheses) to them being involved in mate selection (mate hypothesis) or even having a beneficial effect, direct or indirect, on chicks (drug or nest protection hypothesis, NPH). Many studies have been carried out over the years observing and experimentally testing these hypotheses. This review focuses on studies involving the most popular of these hypotheses, the NPH: that plants decrease nest parasites or pathogens, thereby conveying positive effects to the chicks, allowing the behaviour to evolve. Studies providing observational evidence towards this hypothesis and those experimentally testing it are discussed.
    Parasitology 03/2015; DOI:10.1017/S0031182015000189
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study was conducted to evaluate the anti-parasitic activity of a pure compound from Streptomyces sp. HL-2-14 against fish parasite Ichthyophthirius multifiliis, and elucidate its chemical structure. By electron ionization mass spectrometry (ESI-MS) and nuclear magnetic resonance spectrum (1H NMR and 13C NMR), the compound was identified as amphotericin B (AmB). The in vitro trials revealed that AmB can effectively kill the theronts and tomonts of I. multifiliis with the median lethal concentration (LC50) of 0·8 mg L-1 at 30 min for the theronts and 4·3 mg L-1 at 2 h for the tomonts, respectively. AmB at 5 mg L-1 significantly reduced I. multifiliis infectivity prevalence and intensity on grass carp (Ctenopharyngodon idella), and consequently decreased fish mortality, from 100% in control group to 30% in treated group. The 72 h acute toxicity (LC50) of AmB on grass carp was 20·6 mg L-1, but fish mortality was occurred when exposure to 13·0 mg L-1. These results indicated that AmB was effective in the therapy of I. multifiliis infection, but the safety concentration margin is relatively narrow. Further efforts aiming to decrease the toxicity and improve the therapeutic profile remain to be needed.
    Parasitology 03/2015; DOI:10.1017/S0031182015000116
  • [Show abstract] [Hide abstract]
    ABSTRACT: The impact of haematozoan infection on host fitness has received substantial attention since Hamilton and Zuk posited that parasites are important drivers of sexual selection. However, short-term studies testing the assumption that these parasites consistently reduce host fitness in the wild have produced contradictory results. To address this complex issue, we conducted a long-term study examining the relationship between naturally occurring infection with Haemoproteus and Plasmodium, and lifetime reproductive success and survival of Mountain White-crowned Sparrows. Specifically, we tested the hypothesis that birds infected with haematozoan parasites have reduced survival (as determined by overwinter return rates) and reproductive success. Contrary to expectation, there was no relationship between Haemoproteus and Plasmodium infection and reproduction or survival in males, nor was there a relationship between Plasmodium infection and reproduction in females. Interestingly, Haemoproteus-infected females had significantly higher overwinter return rates and these females fledged more than twice as many chicks during their lifetimes as did uninfected females. We discuss the impact of parasitic infections on host fitness in light of these findings and suggest that, in the case of less virulent pathogens, investment in excessive immune defence may decrease lifetime reproduction.
    Parasitology 03/2015; DOI:10.1017/S0031182015000256
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to investigate the activities of important enzymes involved in the phosphoryl transfer network (adenylate kinase and creatine kinase (CK)), lactate dehydrogenase (LDH), respiratory chain complexes and biomarkers of cardiac function in rat experimentally infected by Trypanosoma evansi. Rat heart samples were evaluated at 5 and 15 days post-infection (PI). At 5 day PI, there was an increase in LDH and CK activities, and a decrease in respiratory chain complexes II, IV and succinate dehydrogenase activities. In addition, on day 15 PI, a decrease in the respiratory chain complex IV activity was observed. Biomarkers of cardiac function were higher in infected animals on days 5 and 15 PI. Considering the importance of the energy metabolism for heart function, it is possible that the changes in the enzymatic activities involved in the cardiac phosphotransfer network and the decrease in respiratory chain might be involved partially in the role of biomarkers of cardiac function of T. evansi-infected rats.
    Parasitology 03/2015; DOI:10.1017/S0031182015000220
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Eight strains of mice, of contrasting genotypes, infected with Heligmosomoides bakeri were studied to determine whether the anthelmintic efficacy of papaya latex varied between inbred mouse strains and therefore whether there is an underlying genetic influence on the effectiveness of removing the intestinal nematode. Infected mice were treated with 330 nmol of crude papaya latex or with 240 nmol of papaya latex supernatant (PLS). Wide variation of response between different mouse strains was detected. Treatment was most effective in C3H (90·5-99·3% reduction in worm counts) and least effective in CD1 and BALB/c strains (36·0 and 40·5%, respectively). Cimetidine treatment did not improve anthelmintic efficacy of PLS in a poor drug responder mouse strain. Trypsin activity, pH and PLS activity did not differ significantly along the length of the gastro-intestinal (GI) tract between poor (BALB/c) and high (C3H) drug responder mouse strains. Our data indicate that there is a genetic component explaining between-mouse variation in the efficacy of a standard dose of PLS in removing worms, and therefore warrant some caution in developing this therapy for wider scale use in the livestock industry, and even in human medicine.
    Parasitology 03/2015; DOI:10.1017/S003118201500013X
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Emergence of malaria parasites resistant to artemisinin necessitates the need for development of new antimalarial therapies. Ciprofloxacin (CFX) a second generation quinolone antibiotic possesses some antimalarial activities. We investigated the in vivo antimalarial activities of CFX in combination with amodiaquine in mice infected with chloroquine-resistant Plasmodium berghei ANKA. Animals were treated orally with 80 or 160 mg kg-1 body weight of CFX alone given twice daily or in combination with amodiaquine (AQ) 10 mg kg-1 body weight. Parasitological activity and survival of the animals were assessed over 21 days. Peak parasitaemia in the untreated control group was 72·51%. Treatment with AQ alone resulted in clearance of parasitaemia by day 4 while treatment with CFX 80 and 160 mg kg-1 alone suppressed parasitaemia by 13·94-54·64% and 35·6-92·7%, respectively. However, the combination of CFX with AQ significantly enhanced response of infection in the animals to treatment (P < 0·05) resulting in complete resolution of parasitaemia throughout follow up period with CFX 160 mg kg-1, delayed recrudescence time with CFX 80 mg kg-1 and significant increase in survival rate of the animals. The results demonstrate beneficial interaction between AQ and CFX which may provide a clinically relevant antimalarial/antibiotic therapeutic option in the management of malaria.
    Parasitology 03/2015; DOI:10.1017/S0031182015000062
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY The uniform morphology of the developmental stages of Haemogregarina species and the insufficient information supplied by the simplistic descriptions of previous authors complicates their differential diagnosis and proper species identification. In this study, we detected Haemogregarina spp. in 6 out of 22 (27·2%) examined turtles originating from Southeast Asia, Malayemys subtrijuga (n = 4), Sacalia quadriocellata (n = 1) and Platysternon megacephalum (n = 1), and compared them with the available literature data. Microscopic analysis of our isolates distinguished 2 morphological species, Haemogregarina pellegrini and one new species, being described in this paper as Haemogregarina sacaliae sp. n. Phylogenetic analyses based on 1210 bp long fragment of 18S rDNA sequences placed both haemogregarines firmly within the monophyletic Haemogregarina clade. Isolates of H. pellegrini from 2 distantly related turtle hosts, M. subtrijuga and P. megacephalum, were genetically identical. Despite the fact that numerous Haemogregarina species of turtles have been described, the incompleteness of the morphological data and relatively low host specificity provides the space for large synonymy within this taxon. Therefore, a complex approach combining microscopic analyses together with molecular-genetic methods should represent the basic standard for all taxonomic studies.
    Parasitology 03/2015; DOI:10.1017/S0031182014001930
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY It is well established that pregnant women are at an increased risk of Plasmodium falciparum infection when compared to non-pregnant individuals and limited epidemiological data suggest Plasmodium vivax risk also increases with pregnancy. The risk of P. falciparum declines with successive pregnancies due to the acquisition of immunity to pregnancy-specific P. falciparum variants. However, despite similar declines in P. vivax risk with successive pregnancies, there is a paucity of evidence P. vivax-specific immunity. Cross-species immunity, as well as immunological and physiological changes that occur during pregnancy may influence the susceptibility to both P. vivax and P. falciparum. The period following delivery, the postpartum period, is relatively understudied and available epidemiological data suggests that it may also be a period of increased risk of infection to Plasmodium spp. Here we review the literature and directly compare and contrast the epidemiology, clinical pathogenesis and immunological features of P. vivax and P. falciparum in pregnancy, with a particular focus on studies performed in areas co-endemic for both species. Furthermore, we review the intriguing epidemiology literature of both P. falciparum and P. vivax postpartum and relate observations to the growing literature pertaining to malaria immunology in the postpartum period.
    Parasitology 03/2015; DOI:10.1017/S0031182015000074