Parasitology

Publisher: Cambridge University Press

Description

  • Impact factor
    2.36
  • 5-year impact
    2.46
  • Cited half-life
    0.00
  • Immediacy index
    0.72
  • Eigenfactor
    0.01
  • Article influence
    0.72
  • ISSN
    1469-8161
  • OCLC
    166102937
  • Material type
    Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Cambridge University Press

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's Pre-print on author's personal website, departmental website, social media websites, institutional repository, non-commercial subject-based repositories, such as PubMed Central, Europe PMC or arXiv
    • Author's post-print for HSS journals, on author's personal website, departmental website, institutional repository, non-commercial subject-based repositories, such as PubMed Central, Europe PMC or arXiv, on acceptance of publication
    • Author's post-print for STM journals, on author's personal website on acceptance of publication
    • Author's post-print for STM journals, on departmental website, institutional repository, non-commercial subject-based repositories, such as PubMed Central, Europe PMC or arXiv, after a 6 months embargo
    • Publisher's version/PDF cannot be used
    • Published abstract may be deposited
    • Pre-print to record acceptance for publication
    • Publisher copyright and source must be acknowledged with set statement, for deposit of Authors Post-print or Publisher's version/PDF
    • Must link to publisher version
    • Publisher last reviewed on 07/10/2014
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Anthropogenic activities are having profound impacts on species interactions, with further consequences for populations and communities. We investigated the influence that anthropogenic eutrophication has on the prevalence of the parasitic tapeworm Schistocephalus solidus in threespine stickleback Gasterosteus aculeatus populations. We caught stickleback from four areas along the coast of Finland, and within each area from one undisturbed and one eutrophied habitat. We found the prevalence of the parasite to be lower in the eutrophied habitats at the start of the breeding season, probably because of fewer piscivorous birds that transmit the parasite. However, while the prevalence of the parasite declined across the season in the undisturbed habitat, it did less so in eutrophied habitats. We discuss different processes that could be behind the differences, such as lower predation rate on infected fish, higher food availability and less dispersal in eutrophied habitats. We found no effect of eutrophication on the proportion of infected stickleback that entered reproductive condition. Together with earlier findings, this suggests that eutrophication increases the proportion of infected stickleback that reproduce. This could promote the evolution of less parasite resistant populations, with potential consequences for the viability of the interacting parties of the host–parasite system.
    Parasitology 01/2015;
  • Parasitology 12/2014;
  • ANIL KUMAR JAISWAL, PRASHANT KHARE, SUMIT JOSHI, KEERTI RAWAT, NARENDRA YADAV, SHYAM SUNDAR, ANURADHA DUBE
    [Show abstract] [Hide abstract]
    ABSTRACT: In earlier studies, proteomic characterization of splenic amastigote fractions from clinical isolates of Leishmania donovani, exhibiting significant cellular responses in cured Leishmania subjects, led to the identification of cytosolic tryparedoxin peroxidase (LdcTryP) and chaperonin-TCP20 (LdTCP20) as Th1-stimulatory proteins. Both the proteins, particularly LdTCP20 for the first time, were successfully cloned, overexpressed, purified and were found to be localized in the cytosol of purified splenic amastigotes. When evaluated against lymphocytes of cured Leishmania-infected hamsters, the purified recombinant proteins (rLdcTryP and rLdTCP20) induced their proliferations as well as nitric oxide production. Similarly, these proteins also generated Th1-type cytokines (IFN-γ/IL-12) from stimulated PBMCs of cured/endemic Leishmania patients. Further, vaccination with rLdcTryP elicited noticeable delayed-type hypersensitivity response and offered considerably good prophylactic efficacy (~78% inhibition) against L. donovani challenge in hamsters, which was well supported by the increased mRNA expression of Th1 and Th2 cytokines. However, animals vaccinated with rLdTCP20 exhibited comparatively lesser prophylactic efficacy (~55%) with inferior immunological response. The results indicate the potentiality of rLdcTryP protein, between the two, as a suitable anti-leishmanial vaccine. Since, rLdTCP20 is also an important target, for optimization, further attempts towards determination of immunodominant regions for designing fusion peptides may be taken up.
    Parasitology 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Latent infection from Toxoplasma gondii (T. gondii) is widespread worldwide and has been associated with cognitive deficits in some but not all animal models and in humans. We tested the hypothesis that latent toxoplasmosis is associated with decreased cognitive function in a large cross-sectional dataset, the National Health and Nutrition Examination Survey (NHANES). There were 4178 participants aged 20-59 years, of whom 19·1% had IgG antibodies against T. gondii. Two ordinary least squares (OLS) regression models adjusted for the NHANES complex sampling design and weighted to represent the US population were estimated for simple reaction time, processing speed and short-term memory or attention. The first model included only main effects of latent toxoplasmosis and demographic control variables, and the second added interaction terms between latent toxoplasmosis and the poverty-to-income ratio (PIR), educational attainment and race-ethnicity. We also used multivariate models to assess all three cognitive outcomes in the same model. Although the models evaluating main effects only demonstrated no association between latent toxoplasmosis and the cognitive outcomes, significant interactions between latent toxoplasmosis and the PIR, between latent toxoplasmosis and educational attainment, and between latent toxoplasmosis and race-ethnicity indicated that latent toxoplasmosis may adversely affect cognitive function in certain groups.
    Parasitology 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Resistance to infections with Heligmosomoides bakeri is associated with a significant quantitative trait locus (QTL-Hbnr1) on mouse chromosome 1 (MMU1). We exploited recombinant mice, with a segment of MMU1 from susceptible C57Bl/10 mice introgressed onto MMU1 in intermediate responder NOD mice (strains 1094 and 6109). BALB/c (intermediate responder) and C57Bl/6 mice (poor responder) were included as control strains and strain 1098 (B10 alleles on MMU3) as NOD controls. BALB/c mice resisted infection rapidly and C57Bl/6 accumulated heavy worm burdens. Fecal egg counts dropped by weeks 10-11 in strain 1098, but strains 1094 and 6109 continued to produce eggs, harbouring more worms when autopsied (day 77). PubMed search identified 3 genes (Ctla4, Cd28, Icos) as associated with 'Heligmosomoides' in the B10 insert. Single nucleotide polymorphism (SNP) differences in Ctla4 could be responsible for regulatory changes in gene function, and a SNP within a splice site in Cd28 could have an impact on function, but no polymorphisms with predicted effects on function were found in Icos. Therefore, one or more genes encoded in the B10 insert into NOD mice contribute to the response phenotype, narrowing down the search for genes underlying the H. bakeri resistance QTL, and suggest Cd28 and Ctla4 as candidate genes.
    Parasitology 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Piroplasms, including Babesia, Cytauxzoon and Theileria species, frequently infect domestic and wild mammals. At present, there is no information on the occurrence and molecular identity of these tick-borne blood parasites in the meerkat, one of South Africa's most endearing wildlife celebrities. Meerkats live in territorial groups, which may occur on ranchland in close proximity to humans, pets and livestock. Blood collected from 46 healthy meerkats living in the South-African Kalahari desert was screened by microscopy and molecular methods, using PCR and DNA sequencing of 18S rRNA and ITS1 genes. We found that meerkats were infected by 2 species: one species related to Babesia sp. and one species related to Cytauxzoon sp. Ninety one percent of the meerkats were infected by the Cytauxzoon and/or the Babesia species. Co-infection occurred in 46% of meerkats. The pathogenicity and vectors of these two piroplasm species remains to be determined.
    Parasitology 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY The sheep tapeworm Moniezia expansa is very common parasite, which affects ruminants such as sheep, goats as well as other species. The benzimidazole anthelmintics albendazole (ABZ), flubendazole (FLU) and mebendazole (MBZ) are often used to treat the infection. The drug-metabolizing enzymes of helminths may alter the potency of anthelmintic treatment. The aim of our study was to assess the activity of the main drug-metabolizing enzymes and evaluate the metabolism of selected anthelmintics (ABZ, MBZ and FLU) in M. expansa. Activities of biotransformation enzymes were determined in subcellular fractions. Metabolites of the anthelmintics were detected and identified using high performance liquid chromatography/ultra-violet/VIS/fluorescence or ultra-high performance liquid chromatography/mass spectrometry. Reduction of MBZ, FLU and oxidation of ABZ were proved as well as activities of various metabolizing enzymes. Despite the fact that the conjugation enzymes glutathione S-transferase, UDP-glucuronosyl transferase and UDP-glucosyl transferase were active in vitro, no conjugated metabolites of anthelmintics were identified either ex vivo or in vitro. The obtained results indicate that sheep tapeworm is able to deactivate the administered anthelmintics, and thus protects itself against their action.
    Parasitology 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Giardiasis is a gastrointestinal disease that affects humans and other animals caused by parasitic protists of the genus Giardia. Giardia intestinalis (Syn. Giardia lamblia; Giardia duodenalis) infections can cause acute or chronic diarrhoea, dehydration, abdominal discomfort and weight loss. Metronidazole is the most widely used drug for treating giardiasis. Although effective, metronidazol has undesirable secondary effects. Plants used in traditional medicine as antidiarrhoeals or antiparasitics may represent alternative sources for new compounds to treat giardiasis. Heterotheca inuloides Cass. (Asteraceae/Compositae) plant is widely used in Mexican traditional medicine. The following secondary metabolites were isolated from H. inuloides flowers: 7-hydroxy-3,4-dihydrocadalene (1), 7-hydroxycadalene (2), 3,7-dihydroxy-3(4H)-isocadalen-4-one (3), 1R,4R-hydroxy-1,2,3,4-tetrahydrocadalen-15-oic acid (4), quercetin (5), quercetin-3,7,3'-trimethyl ether (6), quercetin-3,7,3',4'-tetramethyl ether (7) and eriodictyol-7,4'-dimethyl ether (8). The activity of these compounds against Giardia intestinalis trophozoites was assessed in vitro as was the activity of the semisynthetic compounds 7-acetoxy-3,4-dihydrocadalene (9), 7-benzoxy-3,4-dihydrocadalene (10), 7-acetoxycadalene (11), 7-benzoxycadalene (12), quercetin pentaacetate (13) and 7-hydroxycalamenene (14). Among these, 7-hydroxy-3,4-dihydrocadalene (1) and 7-hydroxycalamenene (14) were the most active, whereas the remaining compounds showed moderate or no activity. The G. intestinalis trophozoites exposed to compound 1 showed marked changes in cellular architecture along with ultrastructural disorganization. The aim of this study was to evaluate the giardicidal activity of selected H. inuloides metabolites and some semisynthetic derivatives using an in vitro experimental model of giardiasis.
    Parasitology 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Nosema bombycis, a pathogen of silkworm pebrine, is an obligate unicellular eukaryotic parasite. It is reported that the spore wall proteins have essential functions in the adherence and infection process of microsporidia. To date, the information related to spore wall proteins from microsporidia is still limited. Here, a 44 kDa spore wall protein NbSWP16 was characterized in N. bombycis. In NbSWP16, a 25 amino acids signal peptide and 3 heparin binding motifs were predicted. Interestingly, a region that contains 3 proline-rich tandem repeats lacking homology to any known protein was also present in this protein. The immunofluorescence analysis (IFA) demonstrated that distinct fluorescent signals were detected both on the surface of mature spores and the germinated spore coats. Immunolocation by electron microscopy revealed that NbSWP16 localized on the exospore regions. Finally, spore adherence analysis indicated that spore adherence to host cell was decreased more than 20% by anti-NbSWP16 blocking compared with the negative control in vitro. In contrast with anti-NbSWP16, no remarkable decrement inhibition was detected when antibodies of NbSWP16 and NbSWP5 were used simultaneously. Collectively, these results suggest that NbSWP16 is a new exospore protein and probably be involved in spore adherence of N. bombycis.
    Parasitology 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Hematodinium is a parasitic dinoflagellate of numerous crustacean species, including the economically important Atlantic snow crab, Chionoecetes opilio. The parasite was cultured in vitro in modified Nephrops medium at 0°C and a partial characterization of the life stages was accomplished using light and transmission electron microscopy (TEM). In haemolymph from heavily infected snow crabs two life stages were detected; amoeboid trophonts and sporonts. During in vitro cultivation, several Hematodinium sp. life stages were observed: trophonts, clump colonies, sporonts, arachnoid sporonts, sporoblasts and dinospores. Cultures initiated with sporonts progressed to motile dinospores; however, those initiated with amoeboid trophonts proliferated, but did not progress or formed schizont-like stages which were senescent artefacts. Plasmodial stages were associated with both trophonts and sporonts and could be differentiated by the presence of trichocysts on TEM. Macrodinospores were observed but not microdinospores; likely due to the low number of Hematodinium sp. cultures that progressed to the dinospore stage. No early life stages including motile filamentous trophonts or gorgonlocks were observed as previously noted in Hematodinium spp. from other crustacean hosts. All Hematodinium sp. life stages contained autofluorescent, membrane-bound electron dense granules that appeared to degranulate or be expelled from the cell during in vitro cultivation.
    Parasitology 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Schistosomiasis is one of the most prevalent, insidious and serious of the tropical parasitic diseases. Although the effective anthelmintic drug, praziquantel, is widely available and cheap, it does not protect against re-infection, drug-resistant schistosome may evolve and mass drug administration programmes based around praziquantel are probably unsustainable long term. Whereas protective anti-schistosome vaccines are not yet available, the zoonotic nature of Schistosoma japonicum provides a novel approach for developing a transmission-blocking veterinary vaccine in domestic animals, especially bovines, which are major reservoir hosts, being responsible for up to 90% of environmental egg contamination in China and the Philippines. However, a greater knowledge of schistosome immunology is required to understand the processes associated with anti-schistosome protective immunity and to reinforce the rationale for vaccine development against schistosomiasis japonica. Importantly as well, improved diagnostic tests, with high specificity and sensitivity, which are simple, rapid and able to diagnose light S. japonicum infections, are required to determine the extent of transmission interruption and the complete elimination of schistosomiasis following control efforts. This article discusses aspects of the host immune response in schistosomiasis, the current status of vaccine development against S. japonicum and reviews approaches for diagnosing and detecting schistosome infections in mammalian hosts.
    Parasitology 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Pentameric ligand-gated ion-channels rapidly transduce synaptic neurotransmitter signals to an electrical response in post-synaptic neuronal or muscle cells and control the neuromusculature of a majority of multicellular animals. A wide range of pharmaceuticals target these receptors including ethanol, nicotine, anti-depressants and other mood regulating drugs, compounds that control pain and mobility and are targeted by a majority of anthelmintic drugs used to control parasitic infection of humans and livestock. Major advances have been made in recent years to our understanding of the structure, function, activity and the profile of compounds that can activate specific receptors. It is becoming clear that these anthelmintic drug targets are not fixed, but differ in significant details from one nematode species to another. Here we review what is known about the evolution of the pentameric ligand-gated ion-channels, paying particular attention to the nematodes, how we can infer the origins of such receptors and understand the factors that determine how they change both over time and from one species to another. Using this knowledge provides a biological framework in which to understand these important drug targets and avenues to identify new receptors and aid the search for new anthelmintic drugs.
    Parasitology 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY MicroRNA-132 (miR-132) has been demonstrated to affect multiple neuronal functions and its dysregulation is linked to several neurological disorders. We previously showed that acute Toxoplasma gondii infection induces miR-132 expression both in vitro and in vivo. To investigate the impact of chronic infection on miR-132, we infected mice with T. gondii PRU strain and performed assessment 5 months later in six brain regions (cortex, hypothalamus, striatum, cerebellum, olfactory bulb and hippocampus) by qPCR. We found that while acute infection of T. gondii increases the expression of miR-132, chronic infection has the opposite effect. The effect varied amongst different regions of the brain and presented in a sex-dependent manner, with females exhibiting more susceptibility than males. MiR-132 and brain-derived neurotrophic factor (BDNF, an inducer of miR-132) were not co-varies in the brain areas of infected mice. T. gondii DNA/RNA was found in all tested brain regions and a selective tropism towards the hippocampus, based on bradyzoite density, was observed in both males and females. However, the expressions of miR-132 or BDNF were poorly reflected by the density of T. gondii in brain areas. Our findings highlight the importance of investigating the miR-132-mediated neuronal function in mice infected with T. gondii.
    Parasitology 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Temperature is an important factor influencing the biology of organisms and is intrinsically linked to climate change. The establishment of trematodes in target hosts is potentially susceptible to temperature changes effecting parasite infectivity or host susceptibility, and therefore in order to develop predictive frameworks of host-parasite dynamics under climate change large-scale analyses are required. The present study analyses the thermodynamics of the infectivity of larval trematodes including miracidia, cercariae and metacercariae from experimental data contained in the scientific literature using the Arrhenius critical incremental energy of activation (E*), an accurate measure of temperature-driven reaction rates. For miracidia and cercariae, infectivity increases as the temperature rises reaching a plateau over optimal thermal ranges before declining at higher temperatures. In contrast, metacercarial infectivity is at its greatest at low temperatures, declining with increasing temperature.
    Parasitology 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Inter-simple sequence repeats markers were used to determinate the genetic variability of Fasciola hepatica populations recovered from sheep and cattle from Spain (Sp1, Sp2, Sp3 and Sp4), UK (Eng), Ireland (Ir) and Mexico (Mex). Twenty five primers were tested but only five produced 39 reproducible bands, being 71·79% polymorphic bands. This percentage ranged from 10·26% in Sp4 to 48·72% in Sp1, and per host between 28·21 and 48·72% in sheep and between 10·26 and 38·46% in cattle. This relatively low range of genetic diversity within populations, with a mean of 34·40%, implies that a large proportion of variation resided among populations. The population differentiation (Gst = 0·547) indicated that 54·7% of variation is due to differences between populations and 45·3% due to differences within population. The Nei's distance ranged between 0·091 and 0·230 in sheep and between 0·150 and 0·337 in cattle. The genetic relationships between populations and individuals were shown by a UPGMA dendrogram and a principal coordinate analysis; both grouped all populations separately from Sp4, a population of from the Midwest of Spain with the lowest level of diversity. Small genetic distances were observed between Eng and Ir, on the one hand, and Sp1, Sp2, Sp3, from the Northwest of Spain, together with Mex, on the other.
    Parasitology 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY The Apicomplexa is a phylum of parasitic protozoa, which includes the malaria parasite Plasmodium, amongst other species that can devastate human and animal health. The past decade has seen the release of genome sequences for many of the most important apicomplexan species, providing an excellent basis for improving our understanding of their biology. One of the key features of each genome is a unique set of large, variant gene families. Although closely related species share the same families, even different types of malaria parasite have distinct families. In some species they tend to be found at the ends of chromosomes, which may facilitate aspects of gene expression regulation and generation of sequence diversity. In others they are scattered apparently randomly across chromosomes. For some families there is evidence they are involved in antigenic variation, immune regulation and immune evasion. For others there are no known functions. Even where function is unknown these families are most often predicted to be exposed to the host, contain much sequence diversity and evolve rapidly. Based on these properties it is clear that they are at the forefront of host-parasite interactions. In this review I compare and contrast the genomic context, gene structure, gene expression, protein localization and function of these families across different species.
    Parasitology 09/2014;