Archives of Virology (Arch Virol)

Publisher: International Union of Microbiological Societies. Virology Division

Journal description

Archives of Virology publishes original contributions from all branches of research on viruses virus-like agents and virus infections of humans animals plants insects and bacteria. Coverage includes the broadest spectrum of topics from initial descriptions of newly discovered viruses to studies of virus structure composition and genetics to studies of virus interactions with host cells host organisms and host populations. Multidisciplinary studies are particularly welcome as are studies employing molecular biologic molecular genetics and modern immunologic and epidemiologic approaches. For example studies on the molecular pathogenesis pathophysiology and genetics of virus infections in individual hosts and studies on the molecular epidemiology of virus infections in populations are encouraged. Studies involving applied research such as diagnostic technology development monoclonal antibody panel development vaccine devleopment and antiviral drug development are also encouraged. However such studies are often better presented in the context of a specific application or as they bear upon general principles of interest to many virologists. In all cases it is the quality of the research work its significance and its originality which will decide acceptability.

Current impact factor: 2.28

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 2.282
2012 Impact Factor 2.03
2011 Impact Factor 2.111
2010 Impact Factor 2.209
2009 Impact Factor 1.909
2008 Impact Factor 2.02

Impact factor over time

Impact factor

Additional details

5-year impact 2.15
Cited half-life 8.50
Immediacy index 0.56
Eigenfactor 0.01
Article influence 0.54
Website Archives of Virology website
Other titles Archives of virology (Online), Arch virol
ISSN 1432-8798
OCLC 42787510
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The Madin-Darby canine kidney (MDCK) cell line is typically used to analyze pathological features after canine influenza virus (CIV) infection. However, MDCK cells are not the ideal cell type, because they are kidney epithelial cells. Therefore, we generated an immortalized canine tracheal epithelial cell line, KU-CBE, to more reliably study immune responses to CIV infection in the respiratory tract. KU-CBE cells expressed the influenza virus receptor, α-2,3-sialic acid (SA), but not α-2,6-SA. KU-CBE and MDCK cells infected with H3N2 CIV demonstrated comparable virus growth kinetics. Gene expression levels of interleukin (IL)-1β, IL-2, IL-4, IL-6, IL-8, IL-10, tumor necrosis factor (TNF)-α, and interferon (IFN)-β were estimated in both KU-CBE and MDCK cells infected with CIV by real-time reverse transcription polymerase chain reaction (qRT-PCR). Of these cytokines, IL-4, IL-10, TNF-α, and IFN-β mRNAs were detected in both cell lines. Gene expression of IL-4, IL-10, and TNF-α was not significantly different in the two cell lines. However, MDCK cells exhibited a significantly higher level of IFN-β mRNA than KU-CBE cells at 18 h post infection. Additionally, the protein concentrations of these four cytokines were determined by enzyme-linked immunosorbent assay (ELISA) using cell culture supernatants obtained from the two CIV-infected cell lines. MDCK cells produced significantly higher amounts of IL-4 and IFN-β than KU-CBE cells. However, KU-CBE cells produced a significantly higher amount of TNF-α than MDCK cells. These data indicated that the newly developed canine tracheal epithelial cells exhibited different cytokine production patterns compared to MDCK cells when infected with CIV. Inflammation of the respiratory tract of dogs induced by CIV infection may be attributed to the elevated expression level of TNF-α in canine tracheal epithelial cells.
    Archives of Virology 03/2015; DOI:10.1007/s00705-015-2395-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: African swine fever virus (ASFV), the causative agent of one of the most important viral diseases of domestic pigs for which no vaccine is available, causes immune system disorders in infected animals. In this study, the serum levels of proinflammatory cytokines, as well as the histological and cellular constitution of lymphoid organs of pigs infected with ASFV genotype II were investigated. The results showed a high degree of lymphocyte depletion in the lymphoid organs, particularly in the spleen and lymph nodes, where ASFV infection led to a twofold decrease in the number of lymphocytes on the final day of infection. Additionally, ASFV-infected pigs had atypical forms of lymphocytes found in all lymphoid organs. In contrast to lymphocytes, the number of immature immune cells, particularly myelocytes, increased dramatically and reached a maximum on day 7 postinfection. The serum levels of TNF-α, IL-1β, IL-6, and IL-8 were evaluated. Proinflammatory cytokines showed increased levels after ASFV infection, with peak values at 7 days postinfection, and this highlights their role in the pathogenesis of ASFV. In conclusion, this study showed that ASFV genotype II, like other highly virulent strains, causes severe pathological changes in the immune system of pigs.
    Archives of Virology 03/2015; DOI:10.1007/s00705-015-2401-7
  • [Show abstract] [Hide abstract]
    ABSTRACT: HIV/AIDS is a leading public health concern throughout the world. Currently, treatment of HIV/AIDS still depends on highly active antiretroviral therapy (HAART); however, there is increasing evidence showing the emergence of resistance to antiretroviral drugs in HIV-1 strains, making ART less effective over time. Intensive monitoring of HIV-1 drug resistance is therefore of great importance to evaluate the current sensitivity of antiretroviral agents and is urgently needed. The aim of this study was to develop a single-loop recombinant pseudotyped-virus-based assay to detect phenotypic resistance in clinical HIV-1 strains. HIV-1 RNA was extracted from HIV-1-infected human plasma samples, and an approximately 3-kb fragment containing p7/p1/p6 cleavage sites and full-length protease (PR), reverse transcriptase (RT), thermonuclease (TNase), and integrase (1-280 aa) genes was amplified by nested RT-PCR. A retroviral vector was constructed using the HIV-1 infectious molecular clone pLWJ to test antiretroviral drug susceptibility. pLWJ-SV40-Luc contained a luciferase expression cassette inserted within a deleted region of the envelope (env) gene as an indicator gene. Resistance test vectors (RTVs) were constructed by incorporating amplified target genes into pLWJ-SV40-Luc by using ApaI or AgeI and AarI restriction sites and conventional cloning methods. The virus stocks used for drug susceptibility test were produced by co-transfecting 293T cells with RTVs and a plasmid that provided vesicular stomatitis virus glycoprotein (VSV-G). Viral replication was monitored by measuring luciferase activity in infected target cells at approximately 48 h postinfection. A total of 35 clinical plasma samples from HIV-1-infected humans were tested, and target fragments were successfully amplified from 34 samples (97.1 %) and 33 RTVs were successfully constructed by directional cloning, with an overall success rate of 94.3 %. A clear-cut dose-dependent relationship was detected between virus production and luciferase activity in the constructed phenotypic resistance testing system. The highest coefficient of determination (R (2)) was found between luciferase activity and drug concentration and viral inhibition at 293T cell concentrations of 5 × 10(4) cells per well. The phenotypic profiles of the viruses from 29 clinical samples almost completely matched the observed genotypes. The results demonstrate that a single-loop recombinant pseudotyped-virus-based assay was successfully developed, and this testing system has high stability and appears to be applicable for testing phenotypic resistance of clinical HIV-1 strains to commonly used antiretroviral agents.
    Archives of Virology 03/2015; DOI:10.1007/s00705-015-2386-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: The worldwide circulation of H9N2 avian influenza virus in poultry, the greater than 2.3 % positive rate for anti-H9 antibodies in poultry-exposed workers, and several reports of human infection indicate that H9N2 virus is a potential threat to human health. Here, we found three mutations that conferred high virulence to H9N2 virus in mice after four passages. The PB2-E627K substitution rapidly appeared at the second passage and played a decisive role in virulence. Polymerase complexes possessing PB2-E627K displayed 16.1-fold higher viral polymerase activity when compared to the wild-type virus, which may account for enhanced virulence of this virus. The other two substitutions (HA-N313D and HA-N496S) enhanced binding to both α2,3-linked and α2,6-linked sialic acid receptors; however, the HA-N313D and N496S substitutions alone decreased the virulence of mouse-adapted virus. Furthermore, this mouse-adapted virus was still not transmissible among guinea pigs by direct contact (0/3 pairs). Our findings show that adaption in mice enhanced the viral polymerase activity and receptor-binding ability, which resulted in a virulent phenotype in mice but not a transmissible phenotype in guinea pigs, indicating that host factors play an important role in adaptive evolution of influenza in new hosts.
    Archives of Virology 03/2015; DOI:10.1007/s00705-015-2383-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: The complete genome sequences of four low-temperature Escherichia coli-specific tevenviruses, vb_EcoM-VR5, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26, were determined. Genomic comparisons including recently described genomes of vb_EcoM-VR7 and JS98 as well as phage T4 allowed the identification of two genetic groups that were consistent with defined host-range phenotypes. Group A included the broad-host-range phages vb_EcoM-VR5 and JS98, while group B included vb_EcoM-VR7, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26, which all had somewhat limited host ranges. All four sequenced phages had genomes that were similar in length (~170 kb) and GC content (~40 %), and, with the exception of vb_EcoM-VR5, at the nucleotide level, they were much more closely related to each other than either was to any other tevenvirus currently characterized. Nevertheless, the overall genome organization of vb_EcoM-VR5, vb_EcoM-VR20, vb_EcoM-VR25 and vb_EcoM-VR26 was comparable to that seen in tevenviruses.
    Archives of Virology 02/2015; DOI:10.1007/s00705-015-2388-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: Samples containing two viruses belonging to the genus Polerovirus, beet chlorosis virus (BChV) and beet mild yellowing virus (BMYV), were collected from French and Polish sugar beet fields. The molecular properties of 24 isolates of BChV and BMYV were investigated, and their genetic diversity was examined in the coat protein (CP)- and P0-encoding genes. For the first time, we have demonstrated that beet polerovirus populations include recombinants between BChV and BMYV containing breakpoints within the CP gene. Moreover, a partial correlation between geographic origin and phylogenetic clustering was observed for BMYV isolates.
    Archives of Virology 10/2014; DOI:10.1007/s00705-014-2245-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: The recently described novel gyroviruses may infect chickens and/or humans; however, their pathogenic potential is unknown. In our metagenomic investigation, we detected many of the novel gyroviruses in the fecal viromes of ferrets with lymph node and organ enlargement. The complete genomic sequences of selected gyrovirus strains showed 90.7-99.4 % similarity to homologous reference gyrovirus strains. This study did not demonstrate an association between gyrovirus shedding from ferrets and the observed background disease; however, it provides evidence for genetic diversity among gyroviruses and raises the possibility that pet ferrets may transmit gyroviruses to heterologous hosts, e.g., humans.
    Archives of Virology 08/2014; DOI:10.1007/s00705-014-2203-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: Begomovirus isolates ToF3B2 and ToF3B17 and betasatellite isolate SatBToF3 were obtained from the same infected tomato plant showing begomovirus disease symptoms in Fontem, Cameroon. The full-length nucleotide sequences of ToF3B2, ToF3B17 and SatBToF3 were cloned and sequenced and were determined to be 2,797 nt, 2,794 and 1,373 nt long respectively. When compared with other begomovirus and betasatellite sequences, ToF3B2 was 93.5 % identical to Tomato leaf curl Togo virus, ToF3B17 was 95 % identical to Tomato leaf curl Cameroon virus and SatBToF3 was 92 % identical to Ageratum leaf curl Cameroon betasatellite (ALCCMB), respectively. The identification of ALCCMB in Ageratum and now in tomato strongly suggests Ageratum may be an alternative host to these viruses and that ALCCMB is non host specific and may cause severe diseases when transmitted to other crops.
    Archives of Virology 07/2014; 159(11). DOI:10.1007/s00705-014-2159-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: βC1 proteins, encoded by betasatellites, are known to be pathogenicity determinants, and they are responsible for symptom expression in many devastating diseases caused by begomoviruses. We report the involvement of βC1 in pathogenicity determination of a mastrevirus. Analysis of field samples of wheat plants containing wheat dwarf India virus (WDIV) revealed the presence of a full-length and several defective betasatellite molecules. The detected betasatellite was identified as ageratum yellow leaf curl betasatellite (AYLCB). No begomovirus was detected in any of the samples. The full-length AYLCB contained an intact βC1 gene, whereas the defective molecules contained complete or partial deletions of βC1. Agroinoculation of wheat with the full-length AYLCB and WDIV or of tobacco with ageratum enation virus enhanced the pathogenicity and accumulation of the respective viruses, whereas the defective molecules could not. This study indicates that βC1 is a pathogenicity determinant for WDIV and can interact functionally not only with begomoviruses but also with a mastrevirus.
    Archives of Virology 07/2014; 159(11):3071-3076. DOI:10.1007/s00705-014-2149-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Swine influenza (SI) is an acute, highly contagious respiratory disease caused by swine influenza A viruses (SwIVs), and it poses a potential global threat to human health. Classical H1N1 (cH1N1) SwIVs are still circulating and remain the predominant subtype in the swine population in China. In this study, a high-growth reassortant virus (GD/PR8) harboring the hemagglutinin (HA) and neuraminidase (NA) genes from a novel cH1N1 isolate in China, A/Swine/Guangdong/1/2011 (GD/11) and six internal genes from the high-growth A/Puerto Rico/8/34(PR8) virus was generated by plasmid-based reverse genetics and tested as a candidate seed virus for the preparation of an inactivated vaccine. The protective efficacy of this vaccine was evaluated in mice and pigs challenged with GD/11 virus. Prime and boost inoculation of GD/PR8 vaccine yielded high-titer serum hemagglutination inhibiting (HI) antibodies and IgG antibodies for GD/11 in both mice and pigs. Complete protection of mice and pigs against cH1N1 SIV challenge was observed, with significantly fewer lung lesions and reduced viral shedding in vaccine-inoculated animals compared with unvaccinated control animals. Our data demonstrated that the GD/PR8 may serve as the seed virus for a promising SwIVs vaccine to protect the swine population.
    Archives of Virology 06/2014; 159(11). DOI:10.1007/s00705-014-2151-y