Theoretical and Applied Genetics (Theor Appl Genet)

Publisher: Springer Verlag

Journal description

Founded in 1929 as "Der Züchter" a German journal for theoretical and applied genetics. In 1966 its direction changed from national to international and from plant breeding to genetics and breeding research. The title changed in 1968 to "Theoretical and Applied Genetics". Edited by H. Stubbe from 1946 to 1976 by H. F. Linskens 1977 to 1987 and by G. Wenzel from 1988. TAG will publish original articles in the following areas: Genetic and physiological fundamentals of plant breeding Applications of plant biotechnology Theoretical considerations in combination with experimental data

Current impact factor: 3.51

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 3.507
2012 Impact Factor 3.658
2011 Impact Factor 3.297
2010 Impact Factor 3.264
2009 Impact Factor 3.363
2008 Impact Factor 3.49
2007 Impact Factor 3.137
2006 Impact Factor 2.715
2005 Impact Factor 3.063
2004 Impact Factor 2.981
2003 Impact Factor 2.287
2002 Impact Factor 2.264
2001 Impact Factor 2.438
2000 Impact Factor 2.358
1999 Impact Factor 2.082
1998 Impact Factor 2.224
1997 Impact Factor 2.04
1996 Impact Factor 2.313
1995 Impact Factor 2.452
1994 Impact Factor 2.536
1993 Impact Factor 2.364
1992 Impact Factor 2.095

Impact factor over time

Impact factor

Additional details

5-year impact 4.06
Cited half-life 9.50
Immediacy index 0.66
Eigenfactor 0.02
Article influence 1.00
Website Theoretical and Applied Genetics (TAG) website
Other titles Theoretical and applied genetics (Online), TAG, TAG, theoretical and applied genetics
ISSN 1432-2242
OCLC 39970596
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: New QTL for Septoria tritici blotch detected in hexapoid spring wheat under field conditions across diverse environments. Septoria tritici blotch caused by the ascomycete fungus Zymoseptoria tritici presents a serious and consistent challenge to global wheat production. In particular the augmented use of soil management practices that leave large amounts of wheat stubble on the soil surface and global warming increases the chance of Septoria tritici blotch epidemics to emerge more frequently including in developing countries. Two recombinant inbred line populations developed from a cross between the susceptible Moroccan spring bread wheat variety 'NASMA' and the CIMMYT resistant lines, 'IAS20*5/H567.71' and 'RPB709.71/COC' were used to study the genetics and map adult-plant resistance to Septoria tritici blotch under field conditions in different environments. Resistance to Septoria tritici blotch in both populations was quantitative and overall, five across environment consistent resistance loci on chromosomes 1BS, 3AL, 5AL and 7AS were detected in the two populations. The QTL on chromosome 1BS and 7AS are likely to be allelic with the known Septoria tritici blotch genes Stb3 and Stb11. All identified QTL were additive and explained between 4 and 27 % of the phenotypic variation. Epistatic interaction was not observed. Low cost KASP assays were developed as flanking markers for all five QTL that will facilitate molecular breeding. Our study represents the first mapping effort under field conditions utilizing two spring bread wheat resistant sources evaluated over multiple environments.
    Theoretical and Applied Genetics 08/2015; DOI:10.1007/s00122-015-2587-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maximizing crop yield while at the same time minimizing crop failure for sustainable agriculture requires a better understanding of the impacts of plant breeding on crop genetic diversity. This review identifies knowledge gaps and shows the need for more research into genetic diversity changes under plant breeding. Modern plant breeding has made a profound impact on food production and will continue to play a vital role in world food security. For sustainable agriculture, a compromise should be sought between maximizing crop yield under changing climate and minimizing crop failure under unfavorable conditions. Such a compromise requires better understanding of the impacts of plant breeding on crop genetic diversity. Efforts have been made over the last three decades to assess crop genetic diversity using molecular marker technologies. However, these assessments have revealed some temporal diversity patterns that are largely inconsistent with our perception that modern plant breeding reduces crop genetic diversity. An attempt was made in this review to explain such discrepancies by examining empirical assessments of crop genetic diversity and theoretical investigations of genetic diversity changes over time under artificial selection. It was found that many crop genetic diversity assessments were not designed to assess diversity impacts from specific plant breeding programs, while others were experimentally inadequate and contained technical biases from the sampling of cultivars and genomes. Little attention has been paid to theoretical investigations on crop genetic diversity changes from plant breeding. A computer simulation of five simplified breeding schemes showed the substantial effects of plant breeding on the retention of heterozygosity over generations. It is clear that more efforts are needed to investigate crop genetic diversity in space and time under plant breeding to achieve sustainable crop production.
    Theoretical and Applied Genetics 08/2015; DOI:10.1007/s00122-015-2585-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: A compensating, recombined Lr59 translocation with greatly reduced alien chromatin was identified. Microsatellite locus Xdupw217 occurs within the remaining segment and can be used as a co-dominant marker for Lr59. In earlier studies, leaf rust (caused by Puccinia triticina Eriks.) resistance gene Lr59 was transferred from Aegilops peregrina (Hackel) Maire et Weiler to chromosome arm 1AL of common wheat (Triticum aestivum L.). The resistance gene was then genetically mapped on the translocated chromosome segment following homoeologous pairing induction. Eight recombinants that retained the least alien chromatin apparently resulted from crossover within a terminal region of the translocation that was structurally different from 1AL. These recombinants could not be differentiated by size, and it was not clear whether they were compensating in nature. The present study determined that the distal part of the original translocation has group 6 chromosome homoeology and a 6BS telomere (with the constitution of the full translocation chromosome being 1AS·1L(P)·6S(P) ·6BS). During the allosyndetic pairing induction experiment to map and shorten the full size translocation, a low frequency of quadrivalents involving 1A, the 1A translocation, and two 6B chromosomes was likely formed. Crossover within such quadrivalents apparently produced comparatively small compensating alien chromatin inserts within the 6BS satellite region on chromosome 6B of seven of the eight recombinants. It appears that the Gli-B2 storage protein locus on 6BS has not been affected by the recombination events, and the translocations are therefore not expected to affect baking quality. Simple sequence repeat marker results showed that Lr59-151 is the shortest recombinant, and it will therefore be used in breeding. Marker DUPW217 detects a homoeo-allele within the remaining alien chromatin that can be used for marker-assisted selection of Lr59.
    Theoretical and Applied Genetics 08/2015; DOI:10.1007/s00122-015-2594-x
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we determine the genetic architecture controlling leaf flecking in maize and investigate its relationship to disease resistance and the defense response. Flecking is defined as a mild, often environmentally dependent lesion phenotype observed on the leaves of several commonly used maize inbred lines. Anecdotal evidence suggests a link between flecking and enhanced broad-spectrum disease resistance. Neither the genetic basis underlying flecking nor its possible relationship to disease resistance has been systematically evaluated. The commonly used maize inbred Mo17 has a mild flecking phenotype. The IBM-advanced intercross mapping population, derived from a cross between Mo17 and another commonly used inbred B73, has been used for mapping a number of traits in maize including several related to disease resistance. In this study, flecking was assessed in the IBM population over 6 environments. Several quantitative trait loci for flecking were identified, with the strongest one located on chromosome 6. Low but moderately significant correlations were observed between stronger flecking and higher disease resistance with respect to two diseases, southern leaf blight and northern leaf blight and between stronger flecking and a stronger defense response.
    Theoretical and Applied Genetics 08/2015; DOI:10.1007/s00122-015-2588-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Genetic diversity in worldwide population of beets is strongly affected by the domestication history, and the comparison of linkage disequilibrium in worldwide and elite populations highlights strong selection pressure. Genetic relationships and linkage disequilibrium (LD) were evaluated in a set of 2035 worldwide beet accessions and in another of 1338 elite sugar beet lines, using 320 and 769 single nucleotide polymorphisms, respectively. The structures of the populations were analyzed using four different approaches. Within the worldwide population, three of the methods gave a very coherent picture of the population structure. Fodder beet and sugar beet accessions were grouped together, separated from garden beets and sea beets, reflecting well the origins of beet domestication. The structure of the elite panel, however, was less stable between clustering methods, which was probably because of the high level of genetic mixing in breeding programs. For the linkage disequilibrium analysis, the usual measure (r (2)) was used, and compared with others that correct for population structure and relatedness (r S (2) , r V (2) , r VS (2) ). The LD as measured by r (2) persisted beyond 10 cM within the elite panel and fell below 0.1 after less than 2 cM in the worldwide population, for almost all chromosomes. With correction for relatedness, LD decreased under 0.1 by 1 cM for almost all chromosomes in both populations, except for chromosomes 3 and 9 within the elite panel. In these regions, the larger extent of LD could be explained by strong selection pressure.
    Theoretical and Applied Genetics 08/2015; DOI:10.1007/s00122-015-2582-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: The white immature fruit color gene w was rapidly mapped to a 33.0-kb region to identify a valuable candidate gene that encodes peroxidase. The skin color of immature fruit is a crucial external trait of cucumbers, and white skin is shared by limited numbers of commercial cultivars. Herein, one BC1 population and two F2 segregating populations were constructed using four inbred parental lines (WD3 × B-2-2 and Q30 × Q24) to investigate the inheritance patterns and chromosomal locations of immature fruit color genes in cucumbers. Consequently, a single recessive gene, w, was identified that controls white immature fruit color. A total of 526 markers, which were derived from published genetic maps, two reference cucumber genomes ("9930" and GY14), and two parents (Q30 and Q24) for which whole-genome sequence information is available, were used to map the target gene w to a 33.0-kb region flanked by two SNP-based markers, ASPCR39262 and ASPCR39229, which are physically located at 39262450 and 39229482 of chromosome 3 ("9930" draft genome assembly), respectively. Gene prediction indicated that four potential genes were located in the target region. One gene that encodes peroxidase is likely to be a valuable candidate gene because quantitative real-time PCR revealed an eightfold difference in its transcriptional level, and several amino acid variations were found when the deduced amino acid sequence was aligned. A co-segregating marker was used synergistically to test its ability to predict the skin colors of 83 dark green/white germplasms, and the validity of its utility in marker-assisted selection was confirmed. Fine mapping of this locus will assist in cloning the gene and in marker-assisted breeding to develop dark green/white cucumber cultivars.
    Theoretical and Applied Genetics 08/2015; DOI:10.1007/s00122-015-2592-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thirty loci for fertility restoration of pollen fertility, anther exsertion and pollen shedding to maize CMS-S were identified by GWAS. S type cytoplasmic male sterile (CMS-S) is the main type of CMS in maize; poor understanding of the genetic architecture of fertility restoration to CMS-S is one of the reasons to impede its utility in hybrid breeding. In this study, genome-wide identification of genetic loci for fertility restoration ability to CMS-S was firstly conducted with a set of testcrossing association mapping panel in three environments. A total of 19, 3 and 8 significant loci (P < 1.8 × 10(-6), α = 1) for pollen fertility, anther exsertion and pollen shedding were identified, respectively, and individual locus explained up to 28.26 % of phenotypic variation. Of them, only Rf3, the main restorer-fertility gene of CMS-S, was identified for the three traits simultaneously. In addition, 83 candidate genes within the 100 kb extension regions of these loci were predicted. These results revealed that besides Rf3 multiple genetic loci and mechanisms are involved in the fertility restoration ability to CMS-S. Results in this study would provide important information for understanding the genetic architecture of fertility restoration to CMS-S in maize.
    Theoretical and Applied Genetics 07/2015; DOI:10.1007/s00122-015-2589-7
  • [Show abstract] [Hide abstract]
    ABSTRACT: Wheat lines with shortened Th. ponticum chromatin carrying Fhb7 and molecular markers linked to Fhb7 will accelerate the transfer of Fhb7 to breeding lines and provide an important resource for future map-based cloning of this gene. Fusarium head blight is a major wheat disease globally. A major FHB resistance gene, designated as Fhb7, derived from Thinopyrum ponticum, was earlier transferred to common wheat, but was not used in wheat breeding due to linkage drag. The aims of this study were to (1) saturate this FHB resistance gene region; (2) develop and characterize secondary translocation lines with shortened Thinopyrum segments carrying Fhb7 using ph1b; (3) pyramid Fhb7 and Fhb1 by marker-assisted selection. Fhb7 was mapped in a 1.7 cM interval that was flanked by molecular markers XsdauK66 and Xcfa2240 with SSR, diversity arrays technology, EST-derived and conserved markers. KS24-2 carrying Fhb7 was analyzed with molecular markers and genomic in situ hybridization, confirming it was a 7DS.7el2L Robertsonian translocation. To reduce the Thinopyrum chromatin segments carrying Fhb7, a BC1F2 population (Chinese Spring ph1bph1b*2/KS24-2) was developed and genotyped with the markers linked to Fhb7. Two new translocation lines (SDAU1881 and SDAU1886) carrying Fhb7 on shortened alien segments (approximately 16.1 and 17.3 % of the translocation chromosome, respectively) were developed. Furthermore, four wheat lines (SDAU1902, SDAU1903, SDAU1904, and SDAU1906) with the pyramided markers flanking Fhb1 and Fhb7 were developed and the FHB responses indicated lines with mean NDS ranging from 1.3 to 1.6 had successfully combined Fhb7 and Fhb1. Three new molecular markers associated with Fhb7 were identified and validated in 35 common wheat varieties. The translocation lines with shortened alien segments carrying Fhb7 (and Fhb1) and the markers closely linked to Fhb7 will be useful for improving wheat scab resistance.
    Theoretical and Applied Genetics 07/2015; DOI:10.1007/s00122-015-2586-x
  • [Show abstract] [Hide abstract]
    ABSTRACT: A combination of BSA and RNA-seq was performed to identify candidates for the restorer-of-fertility gene in onion. The AcPMS1 involved in DNA mismatch repair was identified as the best candidate. To identify candidate genes of the restorer-of-fertility gene (Ms) responsible for fertility restoration of onion cytoplasmic male-sterility, a combined approach of bulked segregant analysis and RNA-seq was employed. From 32,674 de novo assembled contigs, 430 perfectly homozygous SNPs between male-fertile (MF) and male-sterile (MS) bulks were identified in 141 contigs. After verifying the homozygosity of the SNPs by PCR amplification and sequencing, the SNPs on 139 of the contigs were genotypes for the two recombinants which contained crossover events between the Ms locus and two tightly linked molecular markers. As a result, 30 contigs showing perfect linkage with the Ms locus in the large-sized segregating population were identified. Among them, 14 showed perfect linkage disequilibrium (LD) with the Ms locus, as determined by genotyping 251 domestic breeding lines. Furthermore, molecular markers tagging the 14 contigs also showed almost perfect LD with each other in 124 exotic accessions introduced from 21 countries, except for one accession which contained a crossover event by which the 14 markers were divided into two groups. After sequencing of the full-length cDNA of the 14 contigs showing perfect LD, the deduced amino acids sequences of the MF and MS alleles were compared. Four genes were shown to harbor putative critical amino acid changes in the known domains. Among them, the gene encoding PMS1, involved in the DNA mismatch repair pathway, was assumed to be the best candidate gene responsible for fertility restoration of male-sterility in onion.
    Theoretical and Applied Genetics 07/2015; DOI:10.1007/s00122-015-2584-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: Maize kernel row number might be dominated by a set of large additive or partially dominant loci and several small dominant loci and can be accurately predicted by fewer than 300 top KRN-associated SNPs. Kernel row number (KRN) is an important yield component in maize and directly affects grain yield. In this study, we combined linkage and association mapping to uncover the genetic architecture of maize KRN and to evaluate the phenotypic predictability using these detected loci. A genome-wide association study revealed 31 associated single nucleotide polymorphisms (SNPs) representing 17 genomic loci with an effect in at least one of five individual environments and the best linear unbiased prediction (BLUP) over all environments. Linkage mapping in three F2:3 populations identified 33 KRN quantitative trait loci (QTLs) representing 21 QTLs common to several population/environments. The majority of these common QTLs that displayed a large effect were additive or partially dominant. We found 70 % KRN-associated genomic loci were mapped in KRN QTLs identified in this study, KRN-associated SNP hotspots detected in NAM population and/or previous identified KRN QTL hotspots. Furthermore, the KRN of inbred lines and hybrids could be predicted by the additive effect of the SNPs, which was estimated using inbred lines as a training set. The prediction accuracy using the top KRN-associated tag SNPs was obviously higher than that of the randomly selected SNPs, and approximately 300 top KRN-associated tag SNPs were sufficient for predicting the KRN of the inbred lines and hybrids. The results suggest that the KRN-associated loci and QTLs that were detected in this study show great potential for improving the KRN with genomic selection in maize breeding.
    Theoretical and Applied Genetics 07/2015; DOI:10.1007/s00122-015-2581-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using GWAS, 13 significant SNPs distributed on six of the seven Aegilops tauschii chromosomes (all but 5D) were identified, and several candidate P-deficiency-responsive genes were proposed from searches of public databases. Aegilops tauschii, the wheat (Triticum aestivum) D-genome progenitor, possesses numerous genes for stress resistance, including genes for tolerance of phosphorus (P) deficiency. Investigation of the genetic architecture of A. tauschii will help in developing P-deficiency-tolerant varieties of wheat. We evaluated nine traits in a population of 380 A. tauschii specimens under conditions with and without P application, and we performed genome-wide association studies for these traits using single nucleotide polymorphism (SNP) chips containing 7185 markers. Using a general linear model, we identified 119 SNPs that were significantly associated with all nine traits, and a mixed linear model revealed 18 SNPs associated with all traits. Both models detected 13 significant markers distributed on six of the seven A. tauschii chromosomes (all but 5D). Searches of public databases revealed several candidate/flanking genes related to P-deficiency tolerance. These genes were grouped in five categories by the types of proteins they encoded: defense response proteins, enzymes, promoters and transcription factors, storage proteins, or proteins triggered by P deficiency. The identified SNPs and genes contain essential information for cloning genes related to P-deficiency tolerance in A. tauschii and wheat, and they provide a foundation for breeding P-deficiency tolerant wheat cultivars.
    Theoretical and Applied Genetics 07/2015; DOI:10.1007/s00122-015-2578-x
  • [Show abstract] [Hide abstract]
    ABSTRACT: We characterized a novel blast resistance gene Pi50 at the Pi2/9 locus; Pi50 is derived from functional divergence of duplicated genes. The unique features of Pi50 should facilitate its use in rice breeding and improve our understanding of the evolution of resistance specificities. Rice blast disease, caused by the fungal pathogen Magnaporthe oryzae, poses constant, major threats to stable rice production worldwide. The deployment of broad-spectrum resistance (R) genes provides the most effective and economical means for disease control. In this study, we characterize the broad-spectrum R gene Pi50 at the Pi2/9 locus, which is embedded within a tandem cluster of 12 genes encoding proteins with nucleotide-binding site and leucine-rich repeat (NBS-LRR) domains. In contrast with other Pi2/9 locus, the Pi50 cluster contains four duplicated genes (Pi50_NBS4_1 to 4) with extremely high nucleotide sequence similarity. Moreover, these duplicated genes encode two kinds of proteins (Pi50_NBS4_1/2 and Pi50_NBS4_3/4) that differ by four amino acids. Complementation tests and resistance spectrum analyses revealed that Pi50_NBS4_1/2, not Pi50_NBS4_3/4, control the novel resistance specificity as observed in the Pi50 near isogenic line, NIL-e1. Pi50 shares greater than 96 % amino acid sequence identity with each of three other R proteins, i.e., Pi9, Piz-t, and Pi2, and has amino acid changes predominantly within the LRR region. The identification of Pi50 with its novel resistance specificity will facilitate the dissection of mechanisms behind the divergence and evolution of different resistance specificities at the Pi2/9 locus.
    Theoretical and Applied Genetics 07/2015; DOI:10.1007/s00122-015-2579-9