Planta Journal Impact Factor & Information

Publisher: Springer Verlag

Journal description

Planta publishes original articles and invited reviews in all aspects of plant biology particularly in molecular and cell biology ultrastructure biochemistry metabolism growth development and morphogenesis ecological and environmental physiology biotechnology plant-microorganism interactions. Preference is given to experimental articles and articles serving as the basis for experimental work.

Current impact factor: 3.26

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 3.263
2013 Impact Factor 3.376
2012 Impact Factor 3.347
2011 Impact Factor 3
2010 Impact Factor 3.098
2009 Impact Factor 3.372
2008 Impact Factor 3.088
2007 Impact Factor 3.058
2006 Impact Factor 2.963
2005 Impact Factor 3.108
2004 Impact Factor 3.113
2003 Impact Factor 3.053
2002 Impact Factor 2.96
2001 Impact Factor 3.349
2000 Impact Factor 3.199
1999 Impact Factor 2.977
1998 Impact Factor 3.093
1997 Impact Factor 3.323
1996 Impact Factor 3.12
1995 Impact Factor 3.318
1994 Impact Factor 3.3
1993 Impact Factor 2.828
1992 Impact Factor 2.92

Impact factor over time

Impact factor

Additional details

5-year impact 3.63
Cited half-life >10.0
Immediacy index 0.61
Eigenfactor 0.02
Article influence 0.95
Website Planta website
Other titles Planta (Online)
ISSN 1432-2048
OCLC 39973170
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification

Publications in this journal

  • Planta 11/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Main conclusion: OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response through the modulation of three flowering-time genes ( Ehd1, Hd3a , and RFT1 ) in rice. Plant NUCLEAR FACTOR Y (NF-Y) transcription factors control numerous developmental processes by forming heterotrimeric complexes, but little is known about their roles in flowering in rice. In this study, it is shown that some subunits of OsNF-YB and OsNF-YC interact with each other, and among them, OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response of rice. Protein interaction studies showed that the physical interactions occurred between the three OsNF-YC proteins (OsNF-YC2, OsNF-YC4 and OsNF-YC6) and three OsNF-YB proteins (OsNF-YB8, OsNF-YB10 and OsNF-YB11). Repression and overexpression of the OsNF-YC2 and OsNF-YC4 genes revealed that they act as inhibitors of flowering only under long-day (LD) conditions. Overexpression of OsNF-YC6, however, promoted flowering only under LD conditions, suggesting it could function as a flowering promoter. These phenotypes correlated with the changes in the expression of three rice flowering-time genes [Early heading date 1 (Ehd1), Heading date 3a (Hd3a) and RICE FLOWERING LOCUS T1 (RFT1)]. The diurnal and tissue-specific expression patterns of the subsets of OsNF-YB and OsNF-YC genes were similar to those of CCT domain encoding genes such as OsCO3, Heading date 1 (Hd1) and Ghd7. We propose that OsNF-YC2 and OsNF-YC4 proteins regulate the photoperiodic flowering response by interacting directly with OsNF-YB8, OsNF-YB10 or OsNF-YB11 proteins in rice.
    Planta 11/2015; DOI:10.1007/s00425-015-2426-x
  • [Show abstract] [Hide abstract]
    ABSTRACT: Main conclusion: Arabidopsis promoters of genes BANYULS and FRUITFULL are transcribed in Camelina. They triggered the transcription of limonene synthase and induced higher limonene production in seeds and fruits than CaMV 35S promoter. Camelina sativa (Camelina) is an oilseed crop of relevance for the production of biofuels and the plant has been target of a recent and intense program of genetic manipulation aimed to increase performance, seed yield and to modify the fatty acid composition of the oil. Here, we have explored the performance of two Arabidopsis thaliana (Arabidopsis) promoters in triggering transgene expression in Camelina. The promoters of two genes BANYULS (AtBAN pro ) and FRUITFULL (AtFUL pro ), which are expressed in seed coat and valves of Arabidopsis, respectively, have been chosen to induce the expression of limonene synthase (LS) from Citrus limon. In addition, the constitutive CaMV 35S promoter was utilized to overexpress LS in Camelina . The results of experiments revealed that AtBAN pro and AtFUL pro are actively transcribed in Camelina where they also retain specificity of expression in seeds and valves as previously observed in Arabidopsis. LS induced by AtBAN pro and AtFUL pro leads to higher limonene production in seeds and fruits than when the CaMV 35S was used to trigger the expression. In conclusion, the results of experiments indicate that AtBAN pro and AtFUL pro can be successfully utilized to induce the expression of the transgenes of interest in seeds and fruits of Camelina.
    Planta 11/2015; DOI:10.1007/s00425-015-2425-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: Main conclusion: Large-scale comparative phosphoprotein analysis in maize seedlings reveals a complicated molecular regulation mechanism at the phosphoproteomic level during de-etiolation. In the present study we report a phosphoproteomic study conducted on Zea mays etiolated leaves harvested at three time points during greening (etiolated seedlings and seedlings exposed to light for 6 or 12 h). We identified a total of 2483 phosphopeptides containing 2389 unambiguous phosphosites from 1339 proteins. The abundance of nearly 692 phosphorylated peptides containing 783 phosphosites was reproducible and profiled with high confidence among treatments. Comparisons with other large-scale phosphoproteomic studies revealed that 473 of the phosphosites are novel to this study. Of the 783 phosphosites identified, 171, 79, and 138 were identified in 0, 6, and 12 h samples, respectively, which suggest that regulation of phosphorylation plays important roles during maize seedling de-etiolation. Our experimental methods included enrichment of phosphoproteins, allowing the identification of a great number of low abundance proteins, such as transcription factors, protein kinases, and photoreceptors. Most of the identified phosphoproteins were involved in gene transcription, post-transcriptional regulation, or signal transduction, and only a few were involved in photosynthesis and carbon metabolism. It is noteworthy that tyrosine phosphorylation and calcium signaling pathways might play important roles during maize seedling de-etiolation. Taken together, we have elucidated a new level of complexity in light-induced reversible protein phosphorylation during maize seedling de-etiolation.
    Planta 10/2015; DOI:10.1007/s00425-015-2420-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: Main conclusion: This paper reviews the progress of development of plants with desirable starch structure by modifying starch branching enzymes. Starch-branching enzyme (SBE) is responsible for the creation of branches during starch biosynthesis in plastids, and is a major determinant of the final fine structure and physical properties of the starch. Multiple isoforms of SBE have been found in plants, with each playing a different role in amylopectin synthesis. Different methods have been used to develop desirable starch structures by modifying the SBE activity. These can involve changing its expression level (either up-regulation or down-regulation), genetically modifying the activity of the SBE itself, and varying the length of its transferred chains. Changing the activity and the transferred chain length of SBE has been less studied than changing the expression level of SBE in vivo. This article reviews and summarizes new tools for developing plants producing the next generation of starches.
    Planta 10/2015; DOI:10.1007/s00425-015-2421-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: Main conclusion: OsSAPK8 is an essential activator of OsSLAC1 by phosphorylation, and OsSLAC1 is a nitrate-selective anion channel. S-type anion channel AtSLAC1 and protein kinase AtOST1 have been well-characterized as two core components of ABA signaling cascade in Arabidopsis guard cells, and AtOST1 functions as a main upstream activator of AtSLAC1 for drought stress- and ABA-induced stomata closure. However, the identity of the ortholog of AtOST1 in rice, the main activator of OsSLAC1, is still unknown. Here, we report that protein kinase OsSAPK8 interacts with and activates OsSLAC1 mainly by phosphorylating serine 129 (S129) of OsSLAC1, and this phosphorylating site corresponds to the specific phosphorylating site serine 120 (S120) of AtSLAC1 for AtOST1. Additionally, we found that OsSLAC1 is a nitrate-selective anion channel without obvious permeability to chloride, malate, and sulfate, and the expression of OsSLAC1 in Arabidopsis slac1-3 (atslac1-3) mutant successfully rescued the hypersensitive phenotype of this mutant to drought stress. Together, this research suggests that OsSAPK8 is a counterpart of AtOST1 for the activation of OsSLAC1, which is a nitrate-selective anion channel.
    Planta 10/2015; DOI:10.1007/s00425-015-2418-x
  • [Show abstract] [Hide abstract]
    ABSTRACT: Main conclusion: Embryogenesis-related genes ( LdBBM, LdLEC1, LdWOX2 and LdSERK ) were confirmed in sequence and expression abundance for Larix decidua -these findings are valid for somatic as well as for zygotic embryo development. Somatic embryogenesis is a reliable source of high-quality genotypes as it presents an advantageous alternative for conifers in forestry, independent from seed production. Although this propagation method is already being applied, molecular factors initiating and controlling the process remain to be understood. The embryogenesis-associated genes BABYBOOM (BBM), LEAFY COTYLEDON1 (LEC1), WUSCHEL-related HOMEOBOX2 (WOX2) and SOMATIC EMBRYOGENESIS RECEPTOR-like KINASE (SERK) were identified and analyzed in somatic embryos of the European larch, L. decidua Mill. Subsequent comparisons with annotated sequences displayed similarities with angiosperm homologs. Transcript accumulation of the identified genes during embryogenesis has been analyzed. LdLEC1 and LdWOX2 are mainly expressed during early embryogenesis, whereas LdBBM and LdSERK reveal increased expression during later development. Temporal and spatial expression studies revealed a specific LdLEC1 signal in the outer cell layer of young embryo heads, whereas mature embryos showed a homogeneous expression. The overexpression of LdLEC1 in Arabidopsis influences germination and cotyledon formation, thus indicating the interspecific importance of LEC1 for proper embryo and specifically cotyledon development. Our data support a conserved role of principal regulators during plant embryogenesis that may be used as molecular markers for embryogenicity and to further determine initiating processes of somatic embryogenesis.
    Planta 10/2015; DOI:10.1007/s00425-015-2409-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: Main conclusion: The meta-QTL and candidate genes will facilitate the elucidation of molecular bases underlying agriculturally important traits and open new avenues for functional markers development and elite alleles introgression in maize breeding program. A large number of QTLs attributed to grain productivity and other agriculturally important traits have been identified and deposited in public repositories. The integration of fruitful QTL becomes a major issue in current plant genomics. To this end, we first collected QTL for six agriculturally important traits in maize, including yield, plant height, ear height, leaf angle, stay-green, and maize rough dwarf disease resistance. The meta-analysis method was then employed to retrieve 113 meta-QTL. Additionally, we also isolated candidate genes for target traits by the bioinformatic technique. Several candidates, including some well-characterized genes, GA3ox2 for plant height, lg1 and lg4 for leaf angle, zfl1 and zfl2 for flowering time, were co-localized with established meta-QTL intervals. Intriguingly, in a relatively narrow meta-QTL region, the maize ortholog of rice yield-related gene GW8/OsSPL16 was believed to be a candidate for yield. Leveraging results presented in this study will provide further insights into the genetic architecture of maize agronomic traits. Moreover, the meta-QTL and candidate genes reported here could be harnessed for the enhancement of stress tolerance and yield performance in maize and translation to other crops.
    Planta 10/2015; DOI:10.1007/s00425-015-2419-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Main conclusion: Punica granatum has a noticeable adaptation to drought stress. The levels of the green leaf volatile trans-2-hexenal increased in response to drought stress suggesting a possible role of this compound in drought stress response in pomegranate. Punica granatum (L.) is a highly valued fruit crop for its health-promoting effects and it is mainly cultivated in semi-arid areas. Thus, understanding the response mechanisms to drought stress is of great importance. In the present research, a metabolomics analysis was performed to evaluate the effects of drought stress on volatile organic compounds extracted from the leaves of pomegranate plants grown under water shortage conditions. The time course experiment (7 days of water deprivation and 24-h recovery) consisted of three treatments (control, drought stress, and rehydration of drought-stressed plants). Plant weights were recorded and control plants were irrigated daily at pot capacity to provide the lost water. Fraction of transpirable soil water has been evaluated as indicator of soil water availability in stressed plants. The levels of proline, hydrogen peroxide and lipid peroxidation as well as of the photosynthetic parameters such as photosynthesis rate (A), stomatal conductance (g s), photosynthetic efficiency of photosystem II, and photochemical quenching were monitored after the imposition of drought stress and recovery as markers of plant stress. Constitutive carbon volatile components were analyzed in the leaf of control and drought-stressed leaves using Head Space Solid Phase Micro Extraction sampling coupled with Gas Chromatography Mass Spectrometry. A total of 12 volatile compounds were found in pomegranate leaf profiles, mainly aldehydes, alcohols, and organic acids. Among them, the trans-2-hexenal showed a significant increase in water-stressed and recovered leaves respect to the well-watered ones. These data evidence a possible role of the oxylipin pathway in the response to water stress in pomegranate plants.
    Planta 10/2015; DOI:10.1007/s00425-015-2414-1