Microbial Ecology (Microb Ecol)

Publisher: International Society for Microbial Ecology, Springer Verlag

Journal description

Microbial Ecology is an international journal whose aim is the advancement and dissemination of information describing the interactions between microorganisms and the biotic and abiotic components of their environments. Microbial Ecology features articles of original research and brief reviews.

Current impact factor: 3.12

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 3.118
2012 Impact Factor 3.277
2011 Impact Factor 2.912
2010 Impact Factor 2.875
2009 Impact Factor 3.251
2008 Impact Factor 2.885

Impact factor over time

Impact factor
Year

Additional details

5-year impact 3.68
Cited half-life 6.80
Immediacy index 0.59
Eigenfactor 0.02
Article influence 1.16
Website Microbial Ecology website
Other titles Microbial ecology (Online)
ISSN 1432-184X
OCLC 41239662
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as arXiv.org
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ‚Äč green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: As part of a larger investigation, the effect of apex predation on estuarine bacterial community structure, through trophic cascading, was investigated using experimental in situ mesocosms. Through either the removal (filtration) or addition of specific size classes of planktonic groups, four different trophic scenarios were established using estuarine water and its associated plankton. One such treatment represented a "natural" scenario in which stable apex predatory pressure was qualified. Water samples were collected over time from each of the treatments for bacterial community evaluation. These samples were assessed through pyrosequencing of the variable regions 4 and 5 of the bacterial 16S rRNA gene and analysed at the species operational taxonomic unit (OTU) level using a community procedure. The blue-green group dominated the samples, followed by Proteobacteria and Bacteroidetes. Samples were the most similar among treatments at the commencement of the experiment. While the bacterial communities sampled within each treatment changed over time, the deviation from initial appeared to be linked to the treatment trophic scenarios. The least temporal deviation-from-initial in bacterial community was found within the stable apex predatory pressure treatment. These findings are consistent with trophic cascade theory, whereby predators mediate interactions at multiple lower trophic levels with consequent repercussions for diversity.
    Microbial Ecology 10/2015; 69(DOI10.1007/s00248-014-0505-3):245-253. DOI:10.1007/s00248-014-0505-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lichens are frequently colonized by specialized, lichenicolous fungi. Symptomatic lichenicolous fungi usually display typical phenotypes and reproductive structures on the lichen hosts. The classification based on these structures revealed different host specificity patterns. Other fungi occur asymptomatically in the lichen thalli and are much less known. We aimed at studying the diversity of lichen-associated fungi in specific, lichen-rich communities on rocks in the Alps. We tested whether lichenicolous fungi developing symptomatically on their known hosts also occur asymptomatically in other thalli of the same or of different host species. We collected lichen thalli according to a uniform sampling design comprising individuals adjacent to thalli that showed symptoms of lichenicolous fungal infections. The total fungal communities in the selected lichen thalli were further studied by single-strand conformation polymorphism (SSCP) fingerprinting analyses and sequencing of internal transcribed spacer (ITS) fragments. The systematic, stratified sampling strategy helped to recover 17 previously undocumented lichenicolous fungi and almost exhaustively the species diversity of symptomatic lichenicolous fungi in the studied region. The results from SSCP and the sequencing analyses did not reveal asymptomatic occurrence of normally symptomatic lichenicolous fungi in thalli of both the same and different lichen host species. The fungal diversity did not correlate with the species diversity of the symptomatic lichenicolous fungus-lichen host associations. The complex fingerprint patterns recovered here for fungal communities, in associations of well-delimited lichen thalli, suggest lichen symbiosis as suitable subjects for fungal metacommunity studies.
    Microbial Ecology 03/2015; DOI:10.1007/s00248-015-0579-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: Forest pathology, the science of forest health and tree diseases, is operating in a rapidly developing environment. Most importantly, global trade and climate change are increasing the threat to forest ecosystems posed by new diseases. Various studies relevant to forest pathology in a changing world are accumulating, thus making it necessary to provide an update of recent literature. In this contribution, we summarize research at the interface between forest pathology and landscape ecology, biogeography, global change science and research on tree endophytes. Regional outbreaks of tree diseases are requiring interdisciplinary collaboration, e.g. between forest pathologists and landscape ecologists. When tree pathogens are widely distributed, the factors determining their broad-scale distribution can be studied using a biogeographic approach. Global change, the combination of climate and land use change, increased pollution, trade and urbanization, as well as invasive species, will influence the effects of forest disturbances such as wildfires, droughts, storms, diseases and insect outbreaks, thus affecting the health and resilience of forest ecosystems worldwide. Tree endophytes can contribute to biological control of infectious diseases, enhance tolerance to environmental stress or behave as opportunistic weak pathogens potentially competing with more harmful ones. New molecular techniques are available for studying the complete tree endobiome under the influence of global change stressors from the landscape to the intercontinental level. Given that exotic tree diseases have both ecologic and economic consequences, we call for increased interdisciplinary collaboration in the coming decades between forest pathologists and researchers studying endophytes with tree geneticists, evolutionary and landscape ecologists, biogeographers, conservation biologists and global change scientists and outline interdisciplinary research gaps.
    Microbial Ecology 01/2015; DOI:10.1007/s00248-014-0545-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modern research in the area of probiotics is largely devoted to discovering factors that promote the adherence of probiotic candidates to host mucosal surfaces. The aim of the present study was to test the role of aggregation factor (AggL) and mucin-binding protein (MbpL) from Lactococcus sp. in adhesion to gastrointestinal mucosa. In vitro, ex vivo, and in vivo experiments in rats were used to assess the adhesive potential of these two proteins expressed in heterologous host Lactobacillus salivarius BGHO1. Although there was no influence of MbpL protein expression on BGHO1 adhesion to gut mucosa, expression of AggL had a negative effect on BGHO1 binding to ileal and colonic rat mucosa, as well as to human HT29-MTX cells and porcine gastric mucin in vitro. Because AggL did not decrease the adhesion of bacteria to intestinal fragments in ex vivo tests, where peristaltic simulation conditions were missing, we propose that intestinal motility could be a crucial force for eliminating aggregation-factor-bearing bacteria. Bacterial strains expressing aggregation factor could facilitate the removal of pathogens through the coaggregation mechanism, thus balancing gut microbial ecosystems in people affected by intestinal bacteria overgrowth.
    Microbial Ecology 05/2014; DOI:10.1007/s00248-014-0426-1