Microbial Ecology (Microb Ecol )

Publisher: International Society for Microbial Ecology, Springer Verlag

Journal description

Microbial Ecology is an international journal whose aim is the advancement and dissemination of information describing the interactions between microorganisms and the biotic and abiotic components of their environments. Microbial Ecology features articles of original research and brief reviews.

Current impact factor: 3.12

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013/2014 Impact Factor 3.118
2012 Impact Factor 3.277
2011 Impact Factor 2.912
2010 Impact Factor 2.875
2009 Impact Factor 3.251
2008 Impact Factor 2.885

Impact factor over time

Impact factor

Additional details

5-year impact 3.68
Cited half-life 6.80
Immediacy index 0.59
Eigenfactor 0.02
Article influence 1.16
Website Microbial Ecology website
Other titles Microbial ecology (Online)
ISSN 1432-184X
OCLC 41239662
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as arXiv.org
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ‚Äč green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Forest pathology, the science of forest health and tree diseases, is operating in a rapidly developing environment. Most importantly, global trade and climate change are increasing the threat to forest ecosystems posed by new diseases. Various studies relevant to forest pathology in a changing world are accumulating, thus making it necessary to provide an update of recent literature. In this contribution, we summarize research at the interface between forest pathology and landscape ecology, biogeography, global change science and research on tree endophytes. Regional outbreaks of tree diseases are requiring interdisciplinary collaboration, e.g. between forest pathologists and landscape ecologists. When tree pathogens are widely distributed, the factors determining their broad-scale distribution can be studied using a biogeographic approach. Global change, the combination of climate and land use change, increased pollution, trade and urbanization, as well as invasive species, will influence the effects of forest disturbances such as wildfires, droughts, storms, diseases and insect outbreaks, thus affecting the health and resilience of forest ecosystems worldwide. Tree endophytes can contribute to biological control of infectious diseases, enhance tolerance to environmental stress or behave as opportunistic weak pathogens potentially competing with more harmful ones. New molecular techniques are available for studying the complete tree endobiome under the influence of global change stressors from the landscape to the intercontinental level. Given that exotic tree diseases have both ecologic and economic consequences, we call for increased interdisciplinary collaboration in the coming decades between forest pathologists and researchers studying endophytes with tree geneticists, evolutionary and landscape ecologists, biogeographers, conservation biologists and global change scientists and outline interdisciplinary research gaps.
    Microbial Ecology 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: As part of a larger investigation, the effect of apex predation on estuarine bacterial community structure, through trophic cascading, was investigated using experimental in situ mesocosms. Through either the removal (filtration) or addition of specific size classes of planktonic groups, four different trophic scenarios were established using estuarine water and its associated plankton. One such treatment represented a "natural" scenario in which stable apex predatory pressure was qualified. Water samples were collected over time from each of the treatments for bacterial community evaluation. These samples were assessed through pyrosequencing of the variable regions 4 and 5 of the bacterial 16S rRNA gene and analysed at the species operational taxonomic unit (OTU) level using a community procedure. The blue-green group dominated the samples, followed by Proteobacteria and Bacteroidetes. Samples were the most similar among treatments at the commencement of the experiment. While the bacterial communities sampled within each treatment changed over time, the deviation from initial appeared to be linked to the treatment trophic scenarios. The least temporal deviation-from-initial in bacterial community was found within the stable apex predatory pressure treatment. These findings are consistent with trophic cascade theory, whereby predators mediate interactions at multiple lower trophic levels with consequent repercussions for diversity.
    Microbial Ecology 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Modern research in the area of probiotics is largely devoted to discovering factors that promote the adherence of probiotic candidates to host mucosal surfaces. The aim of the present study was to test the role of aggregation factor (AggL) and mucin-binding protein (MbpL) from Lactococcus sp. in adhesion to gastrointestinal mucosa. In vitro, ex vivo, and in vivo experiments in rats were used to assess the adhesive potential of these two proteins expressed in heterologous host Lactobacillus salivarius BGHO1. Although there was no influence of MbpL protein expression on BGHO1 adhesion to gut mucosa, expression of AggL had a negative effect on BGHO1 binding to ileal and colonic rat mucosa, as well as to human HT29-MTX cells and porcine gastric mucin in vitro. Because AggL did not decrease the adhesion of bacteria to intestinal fragments in ex vivo tests, where peristaltic simulation conditions were missing, we propose that intestinal motility could be a crucial force for eliminating aggregation-factor-bearing bacteria. Bacterial strains expressing aggregation factor could facilitate the removal of pathogens through the coaggregation mechanism, thus balancing gut microbial ecosystems in people affected by intestinal bacteria overgrowth.
    Microbial Ecology 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial resistance to antibiotics has become a public health issue. Over the years, pathogenic organisms with resistance traits have been studied due to the threat they pose to human well-being. However, several studies raised awareness to the often disregarded importance of environmental bacteria as sources of resistance mechanisms. In this work, we analyze the diversity of antibiotic-resistant bacteria occurring in aquatic environments of the state of Rio de Janeiro, Brazil, that are subjected to distinct degrees of anthropogenic impacts. We access the diversity of aquatic bacteria capable of growing in increasing ampicillin concentrations through 16S rRNA gene libraries. This analysis is complemented by the characterization of antibiotic resistance profiles of isolates obtained from urban aquatic environments. We detect communities capable of tolerating antibiotic concentrations up to 600 times higher than the clinical levels. Among the resistant organisms are included potentially pathogenic species, some of them classified as multiresistant. Our results extend the knowledge of the diversity of antibiotic resistance among environmental microorganisms and provide evidence that the diversity of drug-resistant bacteria in aquatic habitats can be influenced by pollution.
    Microbial Ecology 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sponges are important components of marine benthic communities. High microbial abundance sponges host a large diversity of associated microbial assemblages. However, the dynamics of such assemblages are still poorly known. In this study, we investigated whether bacterial assemblages present in Spongia lamella remained constant or changed as a function of the environment and life cycle. Sponges were collected in multiple locations and at different times of the year in the western Mediterranean Sea and in nearby Atlantic Ocean to cover heterogeneous environmental variability. Co-occurring adult sponges and offsprings were compared at two of the sites. To explore the composition and abundance of the main bacteria present in the sponge mesohyl, embryos, and larvae, we applied both 16S rRNA gene-denaturing gradient gel electrophoresis (DGGE) and sequencing of excised DGGE bands and quantitative polymerase chain reactions (qPCR). On average, the overall core bacterial assemblage showed over 60 % similarity. The associated bacterial assemblage fingerprints varied both within and between sponge populations, and the abundance of specific bacterial taxa assessed by qPCR significantly differed among sponge populations and between adult sponge and offsprings (higher proportions of Actinobacteria in the latter). Sequences showed between 92 and 100 % identity to sequences previously reported in GenBank, and all were affiliated with uncultured invertebrate bacterial symbionts (mainly sponges). Sequences were mainly related to Chloroflexi and Acidobacteria and a few to Actinobacteria and Bacteroidetes. Additional populations may have been present under detection limits. Overall, these results support that both ecological and biological sponge features may shape the composition of endobiont bacterial communities in S. lamella.
    Microbial Ecology 05/2014;