Journal of Molecular Evolution (J Mol Evol )

Publisher: Springer Verlag

Journal description

The Journal covers experimental and theoretical work aimed at deciphering features of molecular evolution and the processes bearing on these features from the initial formation of macromolecular systems onward. Topics addressed in the Journal include the evolution of informational macromolecules and their relation to more complex levels of biological organization up to populations and taxa. This coverage accommodates well such subfields as comparative structural and functional genomics population genetics the molecular evolution of development the evolution of gene regulation and gene interaction networks and in vitro evolution of DNA and RNA.

Current impact factor: 1.86

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 1.863
2012 Impact Factor 2.145
2011 Impact Factor 2.274
2010 Impact Factor 2.311
2009 Impact Factor 2.323
2008 Impact Factor 2.762

Impact factor over time

Impact factor
Year

Additional details

5-year impact 2.38
Cited half-life 0.00
Immediacy index 0.31
Eigenfactor 0.01
Article influence 0.88
Website Journal of Molecular Evolution website
Other titles Journal of molecular evolution (Online), Molecular evolution, J mol evol
ISSN 1432-1432
OCLC 39983975
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as arXiv.org
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • Journal of Molecular Evolution 02/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The formyl peptide receptors (FPRs) are a family of chemoattractant receptors with important roles in host defense and the regulation of inflammatory reactions. In humans, three FPR paralogs have been identified (FPR1, FPR2, and FPR3) and may have functionally diversified by gene duplication and adaptive evolution. However, the evolutionary mechanisms operating in the diversification of FPR family genes and the changes in selection pressures have not been characterized to date. Here, we have made a comprehensive evolutionary analysis of FPR genes from mammalian species. Phylogenetic analysis showed that an early duplication was responsible for FPR1 and FPR2/FPR3 splitting, and FPR3 originated from the latest duplication event near the origin of primates. Codon-based tests of positive selection reveal interesting patterns in FPR1 and FPR2 versus FPR3, with the first two genes showing clear evidence of positive selection at some sites while the majority of them evolve under strong negative selection. In contrast, our results suggest that the selective pressure may be relaxed in the FPR3 lineage. Of the six amino acid sites inferred to evolve under positive selection in FPR1 and FPR2, four sites were located in extracellular loops of the protein. The electrostatic potential of the extracellular surface of FPR might be affected more frequently with amino acid substitutions in positively selected sites. Thus, positive selection of FPRs among mammals may reflect a link between changes in the sequence and surface structure of the proteins and is likely to be important in the host's defense against invading pathogens.
    Journal of Molecular Evolution 01/2015;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The circadian clock regulates a multitude of plant developmental and metabolic processes. In crop species, it contributes significantly to plant performance and productivity and to the adaptation and geographical range over which crops can be grown. To understand the clock in barley and how it relates to the components in the Arabidopsis thaliana clock, we have performed a systematic analysis of core circadian clock and clock-associated genes in barley, Arabidopsis and another eight species including tomato, potato, a range of monocotyledonous species and the moss, Physcomitrella patens. We have identified orthologues and paralogues of Arabidopsis genes which are conserved in all species, monocot/dicot differences, species-specific differences and variation in gene copy number (e.g. gene duplications among the various species). We propose that the common ancestor of barley and Arabidopsis had two-thirds of the key clock components identified in Arabidopsis prior to the separation of the monocot/dicot groups. After this separation, multiple independent gene duplication events took place in both monocot and dicot ancestors.
    Journal of Molecular Evolution 01/2015; 80(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Nitrogen assimilation is a highly regulated process requiring metabolic coordination of enzymes and pathways in the cytosol, chloroplast, and mitochondria. Previous studies of prasinophyte genomes revealed that genes encoding nitrate and ammonium transporters have a complex evolutionary history involving both vertical and horizontal transmission. Here we examine the evolutionary history of well-conserved nitrogen-assimilating enzymes to determine if a similar complex history is observed. Phylogenetic analyses suggest that genes encoding glutamine synthetase (GS) III in the prasinophytes evolved by horizontal gene transfer from a member of the heterokonts. In contrast, genes encoding GSIIE, a canonical vascular plant and green algal enzyme, were found in the Micromonas genomes but have been lost from Ostreococcus. Phylogenetic analyses placed the Micromonas GSIIs in a larger chlorophyte/vascular plant clade; a similar topology was observed for ferredoxin-dependent nitrite reductase (Fd-NiR), indicating the genes encoding GSII and Fd-NiR in these prasinophytes evolved via vertical transmission. Our results show that genes encoding the nitrogen-assimilating enzymes in Micromonas and Ostreococcus have been differentially lost and as well as recruited from different evolutionary lineages, suggesting that the regulation of nitrogen assimilation in prasinophytes will differ from other green algae.
    Journal of Molecular Evolution 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stereochemical assignment of amino acids and corresponding codons or anticodons has not been successful so far. Here, we focused on proline and GGG (anticodon of tRNA(Pro)) and investigated their mutual interaction. Circular dichroism spectroscopy revealed that guanosine nucleotides (GG, GGG) formed G-quartet structures. The structures were destroyed by adding high concentrations of proline. We propose that the possibility of the reversible proline/G-quartet interaction could have contributed to the specific assignment of proline on GGG and that this coding could have been the first in the genetic code.
    Journal of Molecular Evolution 06/2014; 78(6):310-2.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Proteins are elaborate biopolymers balancing between contradicting intrinsic propensities to fold, aggregate, or remain disordered. Assessing their primary structural preferences observable without evolutionary optimization has been reinforced by the recent identification of de novo proteins that have emerged from previously non-coding sequences. In this paper we investigate structural preferences of hypothetical proteins translated from random DNA segments using the standard genetic code and three of its proposed evolutionarily predecessor models encoding 10, 6, and 4 amino acids, respectively. Our only main assumption is that the disorder, aggregation, and transmembrane helix predictions used are able to reflect the differences in the trends of the protein sets investigated. We found that the 10-residue code encodes proteins that resemble modern proteins in their predicted structural properties. All of the investigated early genetic codes give rise to proteins with enhanced disorder and diminished aggregation propensities. Our results suggest that an ancestral genetic code similar to the proposed 10-residue one is capable of encoding functionally diverse proteins but these might have existed under conditions different from today's common physiological ones. The existence of a protein functional repertoire for the investigated earlier stages which is quite distinct as it is today can be deduced from the presented results.
    Journal of Molecular Evolution 05/2014; 78(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We previously reported that 5'-mononucleotides organized within a multilamellar lipid matrix can produce oligomers in the anhydrous phase of hydration-dehydration (HD) cycles. However, hydrolysis of oligomers can occur during hydration, and it is important to better understand the steady state in which ester bond synthesis is balanced by hydrolysis. In order to study condensation products of mononucleotides and hydrolysis of their polymers, we established a simulation of HD cycles that would occur on the early Earth when volcanic land masses emerged from the ocean over 4 billion years ago. At this stage on early Earth, precipitation produced hydrothermal fields characterized by small aqueous pools undergoing evaporation and refilling at elevated temperatures. Here, we confirm that under these conditions, the chemical potential made available by cycles of hydration and dehydration is sufficient to drive synthesis of ester bonds. If 5'-mononucleotides are in solution at millimolar concentrations, then oligomers resembling RNA are synthesized and exist in a steady state with their monomers. Furthermore, if the mononucleotides can form complementary base pairs, then some of the products have properties suggesting that secondary structures are present, including duplex species stabilized by hydrogen bonds.
    Journal of Molecular Evolution 05/2014; 78(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We propose a genealogy-sampling algorithm, Sequential Markov Ancestral Recombination Tree (SMARTree), that provides an approach to estimation from SNP haplotype data of the patterns of coancestry across a genome segment among a set of homologous chromosomes. To enable analysis across longer segments of genome, the sequence of coalescent trees is modeled via the modified sequential Markov coalescent (Marjoram and Wall, Genetics 7:16, 2006). To assess performance in estimating these local trees, our SMARTree implementation is tested on simulated data. Our base data set is of the SNPs in 10 DNA sequences over 50 kb. We examine the effects of longer sequences and of more sequences, and of a recombination and/or mutational hotspot. The model underlying SMARTree is an approximation to the full recombinant-coalescent distribution. However, in a small trial on simulated data, recovery of local trees was similar to that of LAMARC (Kuhner et al. Genetics 156:1393-1401, 2000a), a sampler which uses the full model.
    Journal of Molecular Evolution 05/2014; 78(5).
  • Journal of Molecular Evolution 05/2014; 78(5).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study of which life history traits primarily affect molecular evolutionary rates is often confounded by the covariance of these traits. Scombroid fishes (billfishes, tunas, barracudas, and their relatives) are unusual in that their mass-specific metabolic rate is positively associated with body size. This study exploits this atypical pattern of trait variation, which allows for direct tests of whether mass-specific metabolic rate or body size is the more important factor of molecular evolutionary rates. We inferred a phylogeny for scombroids from a supermatrix of molecular and morphological characters and used new phylogenetic comparative approaches to assess the associations of body size and mass-specific metabolic rate with substitution rate. As predicted by the body size hypothesis, there is a negative correlation between body size and substitution rate. However, unexpectedly, we also find a negative association between mass-specific metabolic and substitution rates. These relationships are supported by analyses of the total molecular data, separate mitochondrial and nuclear genes, and individual loci, and they are robust to phylogenetic uncertainty. The molecular evolutionary rates of scombroids are primarily tied to body size. This study demonstrates that groups with novel patterns of trait variation can be particularly informative for identifying which life history traits are the primary factors of molecular evolutionary rates.
    Journal of Molecular Evolution 05/2014; 78(6).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The montmorillonite-catalyzed reactions of the 5'-phosphorimidazolide of adenosine in the presence of fluoride were investigated to complete our study on the effect of salts on this type of reaction. Both anions and cations have been found to influence the oligomerization reactions of the activated nucleotides, being used here as a model system for pre-biotic RNA synthesis. However, in total contrast to the behavior of the activated nucleotides in the presence of montmorillonite and other salts, alkali metal fluorides did not yield any detectable oligomerization products except in very dilute (<0.005 M) solutions of fluoride. Instead, 5'-phosphorofluoridates were formed. Their identity was confirmed by a combination of HPLC, mass spectrometry, synthesis, and NMR.
    Journal of Molecular Evolution 04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The major histocompatibility complex (MHC) class IIB genes show considerable sequence similarity between loci. The MHC class II DQB and DRB genes are known to exhibit a high level of polymorphism, most likely maintained by parasite-mediated selection. Studies of the MHC in wild rodents have focused on DRB, whilst DQB has been given much less attention. Here, we characterised DQB genes in Swedish bank voles Myodes glareolus, using full-length transcripts. We then designed primers that specifically amplify exon 2 from DRB (202 bp) and DQB (205 bp) and investigated molecular signatures of natural selection on DRB and DQB alleles. The presence of two separate gene clusters was confirmed using BLASTN and phylogenetic analysis, where our seven transcripts clustered according to either DQB or DRB homologues. These gene clusters were again confirmed on exon 2 data from 454-amplicon sequencing. Our DRB primers amplify a similar number of alleles per individual as previously published DRB primers, though our reads are longer. Traditional d N/d S analyses of DRB sequences in the bank vole have not found a conclusive signal of positive selection. Using a more advanced substitution model (the Kumar method) we found positive selection in the peptide binding region (PBR) of both DRB and DQB genes. Maximum likelihood models of codon substitutions detected positively selected sites located in the PBR of both DQB and DRB. Interestingly, these analyses detected at least twice as many positively selected sites in DQB than DRB, suggesting that DQB has been under stronger positive selection than DRB over evolutionary time.
    Journal of Molecular Evolution 04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Soon after the origin of RNA-based life, depletion of prebiotically synthesised ribonucleotides would have driven the evolution of a biosynthetic pathway to these key building blocks. Ribozyme-catalysed nucleosidation-the key biosynthetic step-requires that ribose and the nucleobases are produced by abiotic chemistry and are relatively stable to the conditions of their synthesis. The most plausible prebiotic synthesis of sugars involves photoreduction of cyanohydrins by hydrogen sulphide in the presence of copper(I) cyanide, and we therefore subjected ribose to these conditions whereupon it was partially converted to 2-deoxyribose. Furthermore, a derivative of uracil is reduced under similar conditions to thymine. Thus, DNA biosynthetic precursors can be formed abiotically from those of RNA allowing for an early evolutionary transition to life based on RNA and DNA.
    Journal of Molecular Evolution 04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prediction of the thermodynamic behaviors of biomolecules at high temperature and pressure is fundamental to understanding the role of hydrothermal systems in the origin and evolution of life on the primitive Earth. However, available thermodynamic dataset for amino acids, essential components for life, cannot represent experimentally observed polymerization behaviors of amino acids accurately under hydrothermal conditions. This report presents the thermodynamic data and the revised HKF parameters for the simplest amino acid "Gly" and its polymers (GlyGly, GlyGlyGly and DKP) based on experimental thermodynamic data from the literature. Values for the ionization states of Gly (Gly(+) and Gly(-)) and Gly peptides (GlyGly(+), GlyGly(-), GlyGlyGly(+), and GlyGlyGly(-)) were also retrieved from reported experimental data by combining group additivity algorithms. The obtained dataset enables prediction of the polymerization behavior of Gly as a function of temperature and pH, consistent with experimentally obtained results in the literature. The revised thermodynamic data for zwitterionic Gly, GlyGly, and DKP were also used to estimate the energetics of amino acid polymerization into proteins. Results show that the Gibbs energy necessary to synthesize a mole of peptide bond is more than 10 kJ mol(-1) less than previously estimated over widely various temperatures (e.g., 28.3 kJ mol(-1) → 17.1 kJ mol(-1) at 25 °C and 1 bar). Protein synthesis under abiotic conditions might therefore be more feasible than earlier studies have shown.
    Journal of Molecular Evolution 03/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the vertebrate central nervous system, glycinergic neurotransmission is regulated by the action of the glycine transporters 1 and 2 (GlyT1 and GlyT2)-members of the solute carrier family 6 (SLC6). Several invertebrate deuterostomes have two paralogous glycine carrier genes, with one gene in the pair having greater sequence identity and higher alignment scores with respect to GlyT1 and the other paralog showing greater similarity to GlyT2. In phylogenetic trees, GlyT2-like sequences from invertebrate deuterostomes form a monophyletic subclade with vertebrate GlyT2, while invertebrate GlyT1-like proteins constitute an outgroup to both the GlyT2-like proteins and to vertebrate GlyT1 sequences. These results are consistent with the hypothesis that vertebrate GlyT1 and GlyT2 are, respectively, derived from GlyT1- and GlyT2-like genes in invertebrate deuterostomes. This implies that the gene duplication which gave rise to these paralogs occurred prior to the origin of vertebrates. GlyT2 subsequently diverged significantly from its invertebrate orthologs (i.e., through the acquisition of a unique N-terminus) as a consequence of functional specialization, being expressed principally in the lower CNS; while GlyT1 has activity in both the lower CNS and several regions of the forebrain.
    Journal of Molecular Evolution 03/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: NLRP proteins are important components of inflammasomes with a major role in innate immunity. A subset of NLRP genes, with unknown functions, are expressed in oocytes and early embryos. Mutations of Nlrp5 in mice are associated with maternal-effect embryonic lethality and mutations of NLRP7 in women are associated with conception of biparental complete hydatidiform moles (biCHMs), suggesting perturbed processes of genomic imprinting. Recessive mutations on NLRP2/7 in humans are associated with reproductive disorders and appear to be induced by a demethylation of the maternal pronucleus. In this study, we find that radiation of NLRP genes occurred before the common ancestor of Afrotheria and Boreoeutheria, with the clade of oocyte-expressed genes originating before the divergence of marsupial and eutherian mammals. There have been multiple independent duplications of NLRP2 genes one of which produced the NLRP7 gene associated with biCHMs.
    Journal of Molecular Evolution 03/2014;