Current Microbiology Journal Impact Factor & Information

Publisher: Springer Verlag

Journal description

Current Microbiology offers a means of rapid publication of timely new information dealing with all aspects of microbial cells including prokaryotes and eukaryotes and, where appropriate, viruses. The topics included are general, medical, and applied microbiology and virology and span the disciplines of physiology, biochemistry, genetics, biotechnology, morphology, taxonomy, diagnostic methods, and immunology as applied to microorganisms. Papers describing new methodologies will also be considered. A series of short papers on the same or related topic is not appropriate for Current Microbiology.

Current impact factor: 1.42

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.423
2013 Impact Factor 1.359
2012 Impact Factor 1.52
2011 Impact Factor 1.815
2010 Impact Factor 1.51
2009 Impact Factor 1.33
2008 Impact Factor 1.33
2007 Impact Factor 1.167
2006 Impact Factor 1.007
2005 Impact Factor 1.059
2004 Impact Factor 1.075
2003 Impact Factor 1.125
2002 Impact Factor 1.21
2001 Impact Factor 1.059
2000 Impact Factor 1.029
1999 Impact Factor 1.165
1998 Impact Factor 1.094
1997 Impact Factor 1.011
1996 Impact Factor 1.092
1995 Impact Factor 0.962
1994 Impact Factor 0.983
1993 Impact Factor 1.087
1992 Impact Factor 0.94

Impact factor over time

Impact factor

Additional details

5-year impact 1.59
Cited half-life 7.70
Immediacy index 0.32
Eigenfactor 0.01
Article influence 0.42
Website Current Microbiology website
Other titles Current microbiology (Online)
ISSN 1432-0991
OCLC 41223110
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The paper presents first description of class 1 integron in an environmental strain of Rahnella aquatilis, a rarely isolated Gram-negative bacterium of the family Enterobacteriaceae. The strain was isolated from the Warta river water, Poland. Class 1 integrase gene was detected by a PCR assay. Sequencing of the integron's variable region showed the presence of a dfrA1-aadA1 gene cassette array. The integron was located in a 54-kbp plasmid that was transferable to Escherichia coli J-53 recipient strain in a conjugation assay. The integron-bearing R. aquatilis strain was resistant to aminoglycosides, penicillins, trimethoprim, sulfamethoxazole, and trimethoprim/sulfamethoxazole. This paper confirms that water environment play a major role in the spread of integrons and, consequently, antimicrobial resistance, among bacteria of various genera.
    Current Microbiology 10/2015; DOI:10.1007/s00284-015-0917-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: A rapid, sensitive, and accurate Vitek MS assay was developed to distinguish clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) from clinical isolates of methicillin-sensitive Staphylococcus aureus (MSSA) by developing an in-house knowledgebase of SuperSpectra. Three unique peaks, including peaks at 2305.6 and 3007.3 Da specific to MRSA, and 6816.7 Da specific to MSSA, were selected for differentiating MRSA and MSSA. This assay accurately identified 84 and 91 % of clinical MRSA and MSSA strains out of the total 142 clinically acquired S. aureus strains that were tested. This method will greatly improve the efficiency of single clinical sample identification of MRSA, thereby facilitating a reduction in the transmission of MRSA in clinical settings.
    Current Microbiology 09/2015; DOI:10.1007/s00284-015-0913-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sub-inhibitory concentrations of antibiotics are always generated as a consequence of antimicrobial therapy and the effects of such residual products in bacterial morphology are well documented, especially the filamentation generated by beta-lactams. The aim of this study was to investigate some morphological and pathological aspects (virulence factors) of Escherichia coli cultivated under half-minimum inhibitory concentration (1.0 µg/mL) of piperacillin-tazobactam (PTZ sub-MIC). PTZ sub-MIC promoted noticeable changes in the bacterial cells which reach the peak of morphological alterations (filamentation) and complexity at 16 h of antimicrobial exposure. Thereafter the filamentous cells and a control one, not treated with PTZ, were comparatively tested for growth curve; biochemical profile; oxidative stress tolerance; biofilm production and cell hydrophobicity; motility and pathogenicity in vivo. PTZ sub-MIC attenuated the E. coli growth rate, but without changes in carbohydrate fermentation or in traditional biochemical tests. Overall, the treatment of E. coli with sub-MIC of PTZ generated filamentous forms which were accompanied by the inhibition of virulence factors such as the oxidative stress response, biofilm formation, cell surface hydrophobicity, and motility. These results are consistent with the reduced pathogenicity observed for the filamentous E. coli in the murine model of intra-abdominal infection. In other words, the treatment of E. coli with sub-MIC of PTZ suggests a decrease in their virulence.
    Current Microbiology 09/2015; DOI:10.1007/s00284-015-0912-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human enteric viruses are a major causative agent of emerging waterborne diseases and constitute a serious public health concern. Environmental contamination occurs through discharge of waste materials from infected persons. Methods for viral detection should be developed to detect low infective dose of enteric viruses in environment. In this study, we aimed at comparing two concentration methods for the detection of naturally occurring enteroviruses in raw and treated sewage. In the first method, polyethylene glycol is used to concentrate viral particles from the collected samples. The second method is based on ultracentrifugation of viral particles at high speed (110,000×g). Genomes of enteroviruses were quantified by the quantitative real-time PCR method in raw and treated sewage samples. PEG-based method yielded higher genomic copies of enteric viruses (with an average of 5.9 log10 genomic copies/100 mL) when applied to raw sewage samples. While the ultracentrifugation assay in the second method decreases genomic copies number (with an average of 5.4 log10 genomic copies/100 mL). The recovery differences between the two methods were not significant when applied to clean samples (treated sewage). This could be explained by the presence of inhibitors, which interfere with qRT-PCR, in less quantity comparatively to raw sewage. PEG-based method would be more accurate for samples with high-organic matter load. This report emphasizes the importance of matrices nature on the recovery of enteroviruses from sewage samples. This should be taken into consideration for establishing standardized virological assays to ensure the virological quality control of discharged water in environment.
    Current Microbiology 09/2015; DOI:10.1007/s00284-015-0909-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fis is one of the most important global regulators and has attracted extensive research attention. Many studies have focused on comparing the Fis global regulatory networks for exploring Fis function during different growth stages, such as the exponential and stationary stages. Although the Fis protein in bacteria is mainly expressed in the exponential phase, the dynamic transcriptional regulation of Fis during the exponential phase remains poorly understood. To address this question, we used RNA-seq technology to identify the Fis-regulated genes in the S. enterica serovar Typhimurium during the early exponential phase, and qRT-PCR was performed to validate the transcriptional data. A total of 1495 Fis-regulated genes were successfully identified, including 987 Fis-repressed genes and 508 Fis-activated genes. Comparing the results of this study with those of our previous study, we found that the transcriptional regulation of Fis was diverse during the early- and mid-exponential phases. The results also showed that the strong positive regulation of Fis on Salmonella pathogenicity island genes in the mid-exponential phase transitioned into insignificant effect in the early exponential phase. To validate these results, we performed a cell infection assay and found that Δfis only exhibited a 1.49-fold decreased capacity compared with the LT2 wild-type strain, indicating a large difference from the 6.31-fold decrease observed in the mid-exponential phase. Our results provide strong evidence for a need to thoroughly understand the dynamic transcriptional regulation of Fis in Salmonella during the exponential phase.
    Current Microbiology 09/2015; DOI:10.1007/s00284-015-0907-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: Four kinds of bioprotective alkaloids-peramine, loline, ergot alkaloid, indole-diterpenes, produced by grass-fungal endophyte symbioses, are deterrents or toxic to vertebrate and invertebrate herbivores. Ergot alkaloids have pharmacological properties and widely are used clinically. The regulation of alkaloids biosynthesis is under intensive study to improve the yield for better agricultural and medicinal application. In this paper, we summarize the structure, related genes, regulation, and toxicity of alkaloids. We focus on the biosynthesis and the regulation network of alkaloids.
    Current Microbiology 09/2015; DOI:10.1007/s00284-015-0906-7
  • [Show abstract] [Hide abstract]
    ABSTRACT: Competitive coexistence of different microorganism species is a fundamental ecological process in the evolution and maintenance of biodiversity. This work studied the interactions happened in the competitive coexistence process of actinomycete Streptomyces sp. and Escherichia coli from morphological and secondary metabolites perspective. We found three important interactions occurred in their successful coexistence process: medium pH was elevated, indole alkaloids with dual inhibiting effects were produced, and culture environment was spatially structured. For the weed-like superior competitor E. coli, its massive growth was suppressed by the elevated pH and the newly produced novel bisindole alkaloid hepchrome. For the inferior Streptomyces sp., its mycelium floated to the medium surface for further colonization, and the growth in liquid medium was inhibited by its self-produced alkaloids such as halichrome A, 1,1,1-Tris (3-indolyl) methane, vibrindole A, and hepchrome. The coexistence of E. coli and Streptomyces sp. was thereby achieved through reduction of spatial and energy resource overlapping and suppression of competition.
    Current Microbiology 09/2015; DOI:10.1007/s00284-015-0908-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pneumatophores are aerial roots developing from the main roots of mangrove plants away from the gravity. The below ground pneumatophore associated soil-prokaryotic community of Avicennia marina was studied by amplicon pyrosequencing (39,378 reads) during monsoon and summer seasons. Apart from the most dominant phylum Proteobacteria in both seasons, the second most were Acidobacteria (summer) and Cyanobacteria/Chloroplast (monsoon). Similarly, Acidobacteria_Gp10 and Cyanobacteria were the second most abundant at class level during summer and monsoon respectively. Archaeal phylum Thaumarchaeota was the most abundant followed by Crenearchaeota and Euryarchaeota. The classes detected in our study were Thermoprotei, Halobacteria and Methanomicrobia.The highest richness and diversity were observed during summer for bacteria, whereas the same phenomena for archaea in monsoon at 97% sequence similarity. To the best of our knowledge, this is the first attempt to catalogue the prokaryotic diversity of pnueumatophore associated soil.
    Current Microbiology 09/2015; DOI:10.1007/s00284-015-0920-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Animal husbandry is a traditional industry with regional characteristic in the Inner Mongolia of China. Recent years, animal breeding has been one of the main pollution sources in this area, followed by domestic sewage and industrial wastewater. The pollution of livestock farm feces may accelerate the development of pathogens and antibiotic resistance genes which pose health risks to humans and animals. In present research, culture-independent molecular ecological methods based on DGGE combined with qPCR were used to investigate the pollution to surrounding environment with different degrees of livestock farm. The cluster analysis of DGGE patterns showed that the livestock farm feces from point pollution source flowed with wastewater discharge has resulted in an impacted range of at least 3000 m, but it did not cause pollution to residential water delivered from upstream of sewage drain outlet. qPCR results revealed that 5 common pathogens (Escherichia coli, Enterococcus, Staphylococcus aureus, Shigella, and Salmonella) presented decreased trend as the sampled distance from point pollution source increased. Also, qPCR assays of 10 common antibiotic resistance genes (tetO, tetL, rpp, rpoB, sul2, sulA, floR, yidY, mphA, and ermC) which cause resistance to tetracycline, rifampicin, fluoroquinolone, quinolone, and erythromycin have been found in the environmental samples. This study clearly indicates the livestock farm discharge pollutants contaminated to the surrounding environment. Our data have provided important information to pollution control in the future.
    Current Microbiology 09/2015; DOI:10.1007/s00284-015-0887-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enhancing cellulose digestibility in animals is important for improving the utilization of forage, which can decrease the amount of food used in animal production. The aim of the present study was to achieve recombinant expression of the cellulase gene in Lactococcus lactis and evaluate the effects of oral administration of the recombinant L. lactis on fiber digestibility in geese. Cellulase (Cell) and green fluorescent protein (GFP) genes were cloned into a L. lactis expression vector (pNZ8149) to construct the recombinant expression plasmid (pNZ8149-GFP-Cell). Then, the recombinant expression plasmid was transformed into L. lactis (NZ3900) competent cells by electroporation to obtain recombinant L. lactis (pNZ8149-GFP-Cell/NZ3900) in which protein expression was induced by Nisin. Expression of GFP and Cell by the recombinant L. lactis was confirmed using SDS-PAGE, fluorescence detection, and Congo red assays. A feeding experiment showed that oral administration of pNZ8149-GFP-Cell/NZ3900 significantly increased the digestibility of dietary fiber in geese fed either a maize stalk diet or a rice chaff diet. Therefore, oral administration of recombinant L. lactis cells expressing the cellulase gene increases fiber digestibility in geese, offering a way to increase the utilization of dietary fiber in geese.
    Current Microbiology 09/2015; DOI:10.1007/s00284-015-0904-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Salmonella enterica serovar Typhimurium (S. Typhimurium) has a wide host range and causes infections ranging from severe gastroenteritis to systemic infections in human, as well as causing typhoid-like disease in murine models of infection. S. Typhimurium translocates its effector proteins through the Salmonella pathogenicity island-I (SPI-I)-encoded T3SS-I needle complex. This study focuses on invasion protein B (SipB) of S. Typhimurium, which plays an active role in SPI-I invasion efficiency. To test our hypothesis, a sipB deletion mutant was constructed through double-crossover allelic using the suicide vector pRE112ΔsipB, and its biological characteristics were analyzed. The results showed that the SipB does not affect the growth of Salmonella, but the adherence, invasion, and virulence of the mutant were significantly decreased compared with wild-type S. Typhimurium (SL1344). This research indicates that SipB is an important virulence factor in the pathogenicity of S. Typhimurium.
    Current Microbiology 09/2015; DOI:10.1007/s00284-015-0903-x
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lepista nuda (Bull. ex Fr.) Cooke (Tricholomataceae) is an edible fungus with both economic and medical value. Identification of its mating-type loci is important for promoting breeding programs in L. nuda. The A mating-type locus of L. nuda and its flanking region were cloned and characterized in the present study. It contained two homeodomain transcription factor genes (called lna1 and lna2). Lna1 and Lna2 protein harbored conserved motif of homeodomain transcription factor protein. The novel finding of this study was that the gene order around the A locus was mip, lna2, lna1, and β-fg in L. nuda, which was differed from other edible fungi. In addition, lna1 and lna2 showed divergent, inward transcriptional direction. The phylogenetic tree of HD proteins showed that L. nuda Lna1 and Lna2 were phylogenetically related with Laccaria bicolor. Our results revealed that the A mating-type locus had been subjected to gene rearrangements relative to all other basidiomycetes.
    Current Microbiology 09/2015; DOI:10.1007/s00284-015-0902-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: Strain T110(T) was isolated from a bamboo rhizosphere soil sample in the Republic of Korea and was found to produce antibiotics and secondary metabolites against a broad range of bacterial and fungal pathogens. It is a gram-positive actinobacterium with a straight and smooth, spore chain morphology. Morphological, physiological, and biochemical characterization suggest that T110(T) belongs to the genus Streptomyces. The predominant menaquinones of strain T110(T) were MK-9 (H6), MK-9 (H8), and MK-10 (H4). The cell wall peptidoglycan contained L L-diaminopimelic acid, glutamic acid, alanine, and glycine. Ribose and glucose were detected as whole-cell hydrolysates. The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, and phosphatidylinositol. The main fatty acids were anteiso-C15:0, anteiso-C17:0, C16:0, and iso-C16:0. Sequence analysis of the 16S rRNA gene (GenBank accession no. KM229361) combined with multiple alignment tools revealed that T110(T) shared the highest degree of similarity with Streptomyces albosporeus subsp. labilomyceticus NBRC 15387(T) (97.9 %). However, DNA-DNA hybridization and phylogenetic analysis indicate that strain T110(T) is distinct from its most closely related species. Therefore, we conclude that strain T110(T) is a novel species of the genus Streptomyces and propose naming it Streptomyces bambusae. The type strain is T110(T) (=KEMB 9005-214(T) = KACC 18225(T) = NBRC 110903(T)).
    Current Microbiology 09/2015; DOI:10.1007/s00284-015-0899-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: Analysis of the full-length 18S rRNA gene sequences of rumen ciliates is more reliable for taxonomical classification and diversity assessment than the analysis of partial hypervariable regions only. The objective of this study was to develop new oligonucleotide primers targeting the full-length 18S rRNA genes of rumen ciliates, and to evaluate the effect of different sources of dietary fiber (corn stover or a mixture of alfalfa hay and corn silage) and protein (mixed rapeseed, cottonseed, and/or soybean meals) on rumen ciliate diversity in dairy cows. Primers were designed based on a total of 137 previously reported ciliate 18S rRNA gene sequences. The 3'-terminal sequences of the newly designed primers, P.1747r_2, P.324f, and P.1651r, demonstrated >99 % base coverage. Primer pair D (P.324f and P.1747r_2) was selected for the cloning and sequencing of ciliate 18S rRNA genes because it produced a 1423-bp amplicon, and did not amply the sequences of other eukaryotic species, such as yeast. The optimal species-level cutoff value for distinguishing between the operational taxonomic units of different ciliate species was 0.015. The phylogenetic analysis of full-length ciliate 18S rRNA gene sequences showed that distinct ciliate profiles were induced by the different sources of dietary fiber and protein. Dasytricha and Entodinium were the predominant genera in the ruminal fluid of dairy cattle, and Dasytricha was significantly more abundant in cows fed with corn stover than in cows fed with alfalfa hay and corn silage.
    Current Microbiology 08/2015; DOI:10.1007/s00284-015-0898-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: Porcine epidemic diarrhea (PED) is a devastating disease in livestock industry. Most of the previous studies related to the PED were focused on the pathology and etiology of porcine epidemic diarrhea virus (PEDV). A little was known regarding the status of gut microbiota after piglets infected by PEDV. In this study, aided by metagenome sequencing technology, gut microbiota profiles in feces of viral diarrhea (VD) and viral control (VC) piglets were investigated. The results showed that the abundance of four dominant phyla (Fusobacteria, Actinobacteria, Verrucomicrobia, and Proteobacteria) in feces was affected greatly by porcine epidemic diarrhea. Especially, the abundance of Fusobacteria was higher in VD piglets (36 %) than in VC piglets (5 %). On the contrary, the Verrucomicrobia was detected in lower distribution proportion in VD piglets (around 0 %) than in VC piglets (20 %). Furthermore, 25 genera were significantly different between VC and VD piglets at the genus level. Among the 25 genera, Leptotrichia belonging to Fusobacteria was remarkably lower in VC piglets than in VD piglets. Akkermansia belonging to Verrucomicrobia was higher in VC piglets than in VD piglets. Our findings implicated that the gut microbiota associated with PED significantly provided an insight into the pathology and physiology of PED.
    Current Microbiology 08/2015; DOI:10.1007/s00284-015-0895-6
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drug-resistant TB poses a major threat to control of TB worldwide. Despite progress in the detection of Multidrug-resistant TB (MDR-TB) cases, a major diagnostic gap remains: 55 % of reported TB patients estimated to have MDR-TB were not detected in 2013. MDR-TB antigens were conjugated to CNBr-activated Sepharose 4B. Specific polyclonal antibodies against MDR-TB Ags were prepared in rabbits using two boosted injections of the MDR-TB antigen. The antibodies were purified and treated with susceptible TB to remove any non-specific and cross-reactive antibodies. In the present study, comparative analysis of electrophoretic pattern of different antigens of INH/RIF-resistant TB were studied for identifying protein profiles. A RIF-resistant TB antigen was shown here to have different protein profiles from INH-resistant TB isolate. The results of Western blotting analysis showed that in the RIF- and INH-resistant antigenic fractions some bands of 14.4 and 45 kDa as immunogenic were common. Moreover, four bands of RIF-resistant TB antigen fractions (16, 19, 21, and 45 KDa) and one band of INH-resistant TB (about 26 KDa) were detected as diagnostic antigens. This study suggests that the Western blot is an accurate test to survey INH- and RIF-resistant TB antigens of M. tuberculosis infection. These findings indicate that MDR-TB diagnosis (based on Ag detection) could be useful in the identification of disease stages that precede symptomatic and microbiologically positive TB, such as subclinical and incipient TB.
    Current Microbiology 08/2015; DOI:10.1007/s00284-015-0891-x
  • [Show abstract] [Hide abstract]
    ABSTRACT: Phospholipase C (PLC) plays important roles in regulating various biological processes in eukaryotes. Currently, little is known about the function of PLC in filamentous fungi, especially the plant pathogenic fungi. Fusarium graminearum is the causal agent of Fusarium head blight in many cereal crops. BLAST search revealed that Fusarium genome contains six FgPLC genes. Using quantitative RT-PCR, different FgPLC gene expressions in mycelia were analyzed. To investigate the role of FgPLC in F. graminearum biology, a pharmacological study using a known inhibitor of PLC (U73122) was conducted. Results showed that inhibition of FgPLC resulted in significant alterations of mycelial growth, conidiation, conidial germination, perithecium formation, and expressions of Tri5 and Tri6 genes. As expected, the treatment of F. graminearum with U73343, an inactive analog of U73122, showed no effect on F. graminearum biology. Our results suggested strongly that FgPLC plays important roles in F. graminearum growth and development.
    Current Microbiology 08/2015; DOI:10.1007/s00284-015-0901-z