Current Microbiology (Curr Microbiol )

Publisher: Springer Verlag


Current Microbiology offers a means of rapid publication of timely new information dealing with all aspects of microbial cells including prokaryotes and eukaryotes and, where appropriate, viruses. The topics included are general, medical, and applied microbiology and virology and span the disciplines of physiology, biochemistry, genetics, biotechnology, morphology, taxonomy, diagnostic methods, and immunology as applied to microorganisms. Papers describing new methodologies will also be considered. A series of short papers on the same or related topic is not appropriate for Current Microbiology.

  • Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    Current Microbiology website
  • Other titles
    Current microbiology (Online)
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors own final version only can be archived
    • Publisher's version/PDF cannot be used
    • On author's website or institutional repository
    • On funders designated website/repository after 12 months at the funders request or as a result of legal obligation
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (The original publication is available at
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Clinicians have long recognized that thyroid hormones have some effects on the gastrointestinal tract. This study aimed to investigate the gut microbiota in hyperthyroid and assess whether there are alterations in the diversity and similarity of gut microbiota in the hyperthyroid when compared with healthy individuals. PCR-denaturing gradient gel electrophoresis (DGGE) with universal primers targeting V3 region of the 16S rRNA gene was employed to characterize the overall intestinal microbiota composition, and some excised gel bands were cloned for sequencing. Enterobacteriaceae, Enterococcus, Bifidobacterium, Clostridium, and Lactobacillus genus were also enumerated by quantitative real-time PCR. A significant difference between hyperthyroid and healthy groups (*P\0.05) was shown in DGGE profiles. And real-time PCR showed obvious decrease of Bifidobacterium and Lactobacillus (*P\0.05), and increase of Enterococcus (*P\0.05) in the hyperthyroid group. This study shows the characterization of gut microbiota in hyperthyroid.
    Current Microbiology 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The in vivo function of polyamine binding protein D (PotD) in Synechocystis sp. PCC 6803 for the transport of spermidine was investigated using Synechocystis mutant disrupted in potD gene. The growth rate of potD mutant was similar to that of wild-type when grown in BG11 medium. However, the mutant exhibited severely reduced growth compared to the wild-type when BG11 medium was supplemented with 0.5 mM spermidine. The mutant accumulated a higher spermidine level than the wild-type when grown in the medium with or without spermidine. Transport experiments revealed that the mutant had a reduction in both the uptake and the excretion of spermidine. Moreover, [(14)C]spermidine-loaded wild-type and mutant cells showed a decrease of [(14)C]spermidine excretion when the assay medium contained exogenous spermidine. These data suggest that PotD is involved in both the uptake and the excretion of spermidine in Synechocystis cells.
    Current Microbiology 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigated the antifungal effects of cement paste containing Paenibacillus polymyxa E681 against Aspergillus niger, a deleterious fungus commonly found in cement buildings and structures. To test the antifungal effects, cement paste containing P. polymyxa E681 was neutralized by CO2 gas, and the fungal growth inhibition was examined according to the clear zone around the cement specimen. In addition to the antifungal effects of the cement paste added with bacteria, calcium crystal precipitation of P. polymyxa E681 was examined by qualitative and quantitative analyses. The cement paste containing P. polymyxa E681 showed strong antifungal effects but fusA mutant (deficient in fusaricidin synthesis) showed no antifungal activity. Crack sealing of the cement paste treated with P. polymyxa E681 was captured by light microscope showed fungal growth inhibition and crack repairing in cement paste.
    Current Microbiology 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Spermine (Spm), a potent bactericidal polyamine, exerts a strong synergistic effect with β-lactams against methicillin-resistant Staphylococcus aureus (MRSA). To explore the Spm-based antibacterial targets in S. aureus, time course-dependent transcriptome analysis was conducted on Mu50 (MRSA) in the absence and presence of Spm. Genes in the sigB regulon and most ATP-producing pathways were found down-regulated when exposure to high dose Spm. In contrast, a number of genes for iron acquisition and regulation showed significant induction, indicating a specific connection between Spm and iron-depletion. The tetM gene for tetracycline (Tc) resistance exhibited most significant fold change among the listed genes. It was specifically upregulated by Tc and Spm but not by other ribosome-targeted drugs or other polyamines; however, such induction of tetM cannot confer resistance to Spm. A set of genes for osmotic balance, including kdpABCDE for potassium ion uptake and regulation, was also induced by Spm stress. Addition of KCl or NaCl, but not high concentration sucrose, was found to increase Spm MIC over 30-fold. In summary, transcriptome analysis demonstrated a specific pattern of response upon Spm exposure, suggesting Spm may alter the intracellular iron status and suppress the SigB regulon to exert its toxicity.
    Current Microbiology 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Burkholderia multivorans causes opportunistic pulmonary infections in cystic fibrosis and immunocompromised patients. The purpose of the present study was to determine the nature of the phospholipids and their fatty acid constituents comprising the cell envelope membranes of strains isolated from three disparate sources. A conventional method for obtaining the readily extractable lipids fraction from bacteria was employed to obtain membrane lipids for thin-layer chromatographic and gas chromatography-mass spectrophotometric analyses. Major fatty acid components of the B. multivorans readily extractable lipid fractions included C16:0 (palmitic acid), C16:1 (palmitoleic acid), and C18:1 (oleic acid), while C14:0 (myristic acid), ΔC17:0 (methylene hexadecanoic acid), C18:0 (stearic acid), and ΔC19:0 (methylene octadecanoic acid) were present in lesser amounts. Fatty acid composition differed quantitatively among strains with regard to C16:0, C16:1, ΔC17:0, C18:1, and ΔC19:0 with the unsaturated:saturated fatty acid ratios being significantly less in a cystic fibrosis type strain than either environmental or chronic granulomatous disease strains. Phospholipids identified in all B. multivorans strains included lyso-phosphatidylethanolamine, phosphatidylglycerol, phosphatidylethanolamine, and diphosphatidylglycerol in similar ratios. These data support the conclusion that the cell envelope phospholipid profiles of disparate B. multivorans strains are similar, while their respective fatty acyl substituent profiles differ quantitatively under identical cultivation conditions.
    Current Microbiology 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, the isolation of an endophytic fungus from the leaves of the medicinal herb adlay (Coix lacryma-jobi L. var. ma-yuen Stapf) is reported for the first time. The fungus produced Triolein (trioleoylglycerol), a major constituent of triacylglycerols (TAGs) of adlay, in rice medium under shake-flask and bench-scale fermentation conditions. The fungus was identified as Gibberella moniliformis (Fusarium verticillioides) by its morphology and authenticated by ITS analysis (ITS1 and ITS2 regions and the intervening 5.8S rDNA region). Triolein was identified by HPLC-ELSD coupled with APCI-MS and confirmed through comparison with authentic standard. The concentration of triolein produced by G. moniliformis AH13 reached 2.536 ± 0.006 mg/g dry weight of mycelium. Moreover, the EtOAc extract of G. moniliformis AH13 showed strong antitumor activity against four types of tumor cells (A549, HCT116, MDA-MB-231, and SW1990). These results suggest that G. moniliformis AH13 in adlay has significant scientific and industrial potential to meet the pharmaceutical demands and sustainable energy requirements for TAGs in a cost-effective, easily accessible, and reproducible way and is also a potential novel source of natural antitumor bioactive agents.
    Current Microbiology 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacterial multiresistance is a health problem worldwide that demands new antimicrobials for treating bacterial-related infections. In this study, we evaluated the antimicrobial activity and the theoretical toxicology profile of N-substituted-phenylamino-5-methyl-1H-1,2,3-triazole-4-carbohydrazide derivatives against gram-positive and gram-negative bacteria clinical strains. On that purpose we determined the minimum inhibitory (MIC) and bactericidal (MBC) concentrations, the in vitro cytotoxicity, and in silico risk profiles, also comparing with antimicrobial agents of clinical use. Among the 16 derivatives analyzed, four nitrofurans (N-H-FUR-NO2, N-Br-FUR-NO2, N-F-FUR-NO2, N-Cl-FUR-NO2) showed promising MIC and MBC values (MIC = MBC = 1-16 μg/mL). The experimental data revealed the potential of these derivatives, which were comparable to the current antimicrobials with similar bactericidal and bacteriostatic profiles. Therefore, these molecules may be feasible options to be explored for treating infections caused by multiresistant strains. Our in vitro and in silico toxicity reinforced these results as these derivatives presented low cytotoxicity against human macrophages and low theoretical risk profile for irritant and reproductive effects compared to the current antimicrobials (e.g., vancomycin and ciprofloxacin). The molecular modeling analysis also revealed positive values for their theoretical druglikeness and drugscore. The presence of a 5-nitro-2-furfur-2-yl group seems to be essential for the antimicrobial activity, which pointed these acylhydrazone derivatives as promising for designing more potent and safer compounds.
    Current Microbiology 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Kunming (KM) mouse is a closed colony mouse strain widely used in Chinese pharmacology, toxicology, and microbiology research laboratories. However, few studies have examined human flora-associated (HFA) microbial communities in KM mice. In this study, HFA models were built from germ-free KM and C57BL/6J mouse strains, and gut microbial diversity was analyzed by denaturing gradient gel electrophoresis (DGGE) and DNA sequencing. We found that the two strains of HFA mice were significantly different based on the UPGMA dendrogram and the Richness index, but dice similarity coefficients of mouse replicates were not significantly different between HFA-KM and HFA-C57BL/6J. Most of the dominant phyla of human gut microflora could be transferred into the guts of the two mouse strains. However, the predominant genus that formed in HFA-KM was Clostridium sp. and that in HFA-C57BL/6J was Blautia sp. These results imply that genotypes difference between the two mice strains is a critical factor in shaping the intestinal microflora. However, genetic differences of individuals within KM mouse populations failed to lead to individual difference in microflora. Successful generation of HFA-KM mice will facilitate studies examining how diet affects gut microbial structure, and will enable comparative studies for uncovering genetic factors that shape gut microbial communities.
    Current Microbiology 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The presence of enterovirulent and/or antibiotic resistant strains of Escherichia coli in recreational bathing waters would represent a clear health issue. In total, 144 E. coli isolated from 26 beaches along the inner Oslo fjord were examined for virulence determinants and resistance to clinically important antibiotics. No isolates possessed the genetic determinants associated with enterotoxigenic strains and none showed the prototypic sorbitol negative, O157:H7 phenotype. A small number (∼1 %) produced alpha-hemolysin. Occurrences and patterns of antibiotic resistances were similar to those of E. coli isolated previously from environmental samples. In total, 6 % of the strains showed one or more clinically relevant resistances and 1.4 % were multi-drug resistant. Microarray analyses suggested that the resistance determinants were generally associated with mobile genetic elements. Resistant strains were not clonally related, and were, furthermore not concentrated at one or a few beach sites. This suggests that these strains are entering the waters at a low rate but in a widespread manner. The study demonstrates that resistant E. coli are present in coastal bathing waters where they can come into contact with bathers, and that the resistance determinants are potentially transferable. Some of the resistances registered in the study are to important antibiotics used in human medicine such as fluoroquinolones. The spread of antibiotic resistant genes, from the clinical setting to the environment, has clear implications with respect to the current management of bacterial infections and the long term value of antimicrobial therapy. The present study is the first of its kind in Norway.
    Current Microbiology 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A Gram-positive, aerobic, non-motile, non-sporulating, acid-fast, and rod-shaped bacterium (BFLP-6(T)), previously isolated from a seahorse (Hippocampus guttulatus) with tail rot, was studied using a polyphasic taxonomic approach. Growth occurred at 15-35 °C (optimum 25 °C), at pH 5.0-10.0 (optimum pH 7.0) and at NaCl concentrations between 0 and 6 % (w/v). The G+C content of DNA was 66.7 mol%. The predominant fatty acids were C18:1 ω9c, C16:0 and C16:1 ω6c. A mycolic acid pattern of alpha-mycolates and keto-mycolates was detected. Analysis of concatenated sequences (16S rRNA, rpoB, ssrA and tuf genes), and chemotaxonomic and phenotypic features indicated that strain BFLP-6(T) represents a novel species within the genus Mycobacterium, for which the name Mycobacterium hippocampi sp. nov. is proposed. The type strain is BFLP-6(T) (=DSM 45391(T) =LMG 25372(T)).
    Current Microbiology 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effects of the interaction between Suillus luteus (L.) Roussel and Trichoderma virens (J.H. Mill., Giddens & A.A. Foster) Arx on Pinus sylvestris var. mongolica Litv. were studied using plant physiology, mycorrhizal science, forest pathology, and biochemistry. Seedling growth and physiological parameters were determined, including the colonization rate of mycorrhizal fungi, biomass, root activity, photosynthetic pigment content, soluble protein content, antioxidant enzyme activities, rhizosphere soil enzyme activities, and protective enzyme activities. In addition, an optimal resistance system involving T. virens, mycorrhizal fungus (S. luteus), and P. sylvestris var. mongolica seedlings was constructed. Synergies between S. luteus and T. virens were observed, and most of the parameters of P. sylvestris var. mongolica seedlings inoculated with S. luteus 30 days + T. virens were higher than other treatments. After three months, when compared the control, the S. luteus 30 days + T. virens treatment gave increases in height (42.3 %); collar diameter (66.7 %); fresh weight (54 %); dry weight (50 %); soluble protein content (69.86 %); root activity (150 %); chlorophyll a (77.6 %); chlorophyll b (70.5 %); carotenoids (144 %); CAT activity (876.9 %); POD activity (268.3 %); SOD activity (66.18 %); β-1,3-glucanase activity (125.8 %); chitinase activity (40 %); rhizosphere soil catalase activity (97.8 %); and phosphatase activity (266.7 %). These results indicate that there may be a stimulating factor between S. luteus and T. virens when they are inoculated together (S. luteus 30 days + T. virens).
    Current Microbiology 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insect bacterial symbionts contribute to many essential biological functions of their hosts and can also influence host fecundity and fitness. The physiological contribution symbionts provide can aid in immune response and xenobiotic detoxification. Both of these immune factors can directly impact strategies aimed at managing insect populations. One biological control strat- egy that shows promise in insects is the use of single- stranded RNA viruses within the group Dicistroviridae. The Solenopsis invicta Virus (SINV; Dicistroviridae), a ssRNA virus, has been proposed as a potential biological control agent for the urban pest S. invicta Buren or red imported fire ant (RIFA). SINV has been shown to be prevalent in RIFA populations of Texas and Florida; however, mortality is associated with high viral load. In other insect microbe systems, presence of particular bac- teria induced resistance against Dicistrovirus. If this type of relationship is present in the RIFA–SINV system, their bacterial community could reduce the effectiveness of SINV as a biological control system. The advantage of 454 pyro-sequencing is that it enables classification of uncul- turable bacteria. This study examines the bacterial com- munity in brood, workers, and reproductive cast members from colonies with and without SINV infection. Manipu- lation of the bacterial community may alter virus infection and replication within the mid-gut. Understanding the differences in the microbial community of ant colonies may provide insights that will refine current efforts designing control strategies for this important urban pest.
    Current Microbiology 04/2014;

Related Journals