Archives of Environmental Contamination and Toxicology (Arch Environ Contam Toxicol)

Publisher: Springer Verlag

Journal description

Archives of Environmental Contamination and Toxicology is a repository of significant, full-length articles describing original experimental or theoretical research work pertaining to the scientific aspects of contaminants in the environment. It provides a place for the publication of detailed, definitive, complete, credible reports concerning advances and discoveries in the fields of air, water, and soil contamination and pollution, human health aspects, and in disciplines concerned with the introduction, presence, and effects of deleterious substances in the total environment. Acceptable manuscripts for the Archives are the ones that deal with some aspects of environmental contaminants, including those that lie in the domains of analytical chemistry, biochemistry, pharmacology, toxicology, agricultural, air, water, and soil chemistry.

Current impact factor: 1.90

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.895
2013 Impact Factor 1.96
2012 Impact Factor 2.012
2011 Impact Factor 1.927
2010 Impact Factor 1.93
2009 Impact Factor 1.743
2008 Impact Factor 1.864
2007 Impact Factor 1.62
2006 Impact Factor 1.419
2005 Impact Factor 1.408
2004 Impact Factor 1.612
2003 Impact Factor 1.857
2002 Impact Factor 1.516
2001 Impact Factor 1.301
2000 Impact Factor 1.437
1999 Impact Factor 1.173
1998 Impact Factor 1.065
1997 Impact Factor 1.102
1996 Impact Factor 1.396
1995 Impact Factor 1.307
1994 Impact Factor 1.182
1993 Impact Factor 1.252
1992 Impact Factor 1.221

Impact factor over time

Impact factor

Additional details

5-year impact 2.13
Cited half-life >10.0
Immediacy index 0.39
Eigenfactor 0.01
Article influence 0.52
Website Archives of Environmental Contamination and Toxicology website
Other titles Archives of environmental contamination and toxicology (Online), Environmental contamination and toxicology
ISSN 1432-0703
OCLC 41210730
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Coupling air pollutants with particular meteorological conditions can induce air pollution episodes. To our knowledge, how typhoons influence mercury (Hg) as an extreme weather phenomena has not been reported. Gaseous elemental Hg (GEM) was measured during a time period (from September 16, 2011 to October 9, 2011) that included three typhoons (Haitang, Nesat, and Nalgae) at the Wuzhishan National Atmospheric Background Station. The GEM concentration during these typhoons ranged from 1.81 to 4.73 ng/m(3) (2.97 ± 0.58 ng/m(3)), 1.27 to 4.42 ng/m(3) (2.69 ± 0.83 ng/m(3)), and 1.43 to 2.99 ng/m(3) (2.47 ± 0.32 ng/m(3)), which was higher than for the non-typhoon period (1.14-2.93 ng/m(3), 1.61 ± 0.52 ng/m(3)). Simultaneously, the three typhoon periods exhibited a significant positive correlation between the GEM concentration and wind speed. These results differ from the common belief that lower pollutant concentrations will occur due to a typhoon accelerating pollutant diffusion. Changes in the wind direction and long range pollutant transport from the Chinese mainland can reasonably account for this abnormality. There was a significantly positive correlation between the GEM and SO2, NO x , CO, and O3 levels during the three typhoons periods, which indicates they came from the same sources or areas. A backward trajectory analysis and the concentration weighted field at our monitoring site indicated that clean air masses mainly came from Southeast Asia or the southeast and northeast sea surfaces during non-typhoon periods, while polluted air masses came from the Chinese mainland during the three typhoon periods. The results implied that the increased GEM concentrations in the Wuzhi Mountain were caused by the long-range atmospheric transport of Hg from the Chinese mainland during the typhoon periods. The combustion of coal may be the main emission sources.
    Archives of Environmental Contamination and Toxicology 09/2015; DOI:10.1007/s00244-015-0225-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since their ubiquity in the ocean and marine organisms was first revealed, global concern about microplastics has grown considerably. The North Pacific Ocean and the adjacent marginal seas have high levels of microplastic contamination compared with the global average. This special issue on microplastics was organized by the North Pacific Marine Science Organization to share information on microplastic pollution in the North Pacific region. The special issue highlights high levels of contamination in the North Pacific both on shorelines and at the sea surface. Particularly high levels of contamination were reported on the western and southern coasts of Korea. Sources, including sewage discharge, aquaculture, and shipyards, were implicated. With the direction and energy of surface winds and currents have an important influence on shoreline patterns of distribution. The special issue also demonstrates potential for ingestion of microplastic by small planktonic organisms at the base of the food chain. A wide range of chemicals are associated with plastic debris and concerns are expressed about the potential for these chemicals to transfer to biota upon ingestion. As an introduction to the topic, this paper provides a brief background on microplastic contamination, highlights some key research gaps, and summarizes findings from the articles published in this issue.
    Archives of Environmental Contamination and Toxicology 09/2015; 69(3). DOI:10.1007/s00244-015-0216-x
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many studies demonstrated the presence of diverse environmental contaminants in the Douro River estuary, such as natural and synthetic estrogens, pharmaceuticals, industrial compounds and pesticides. This estuary is located between two densely populated cities and is highly impacted due to anthropogenic activities, such as industry and agriculture. Although the presence of mycotoxins and phytoestrogens, such as lignans and coumestrans, in the aquatic environment is reported by some authors, their occurrence in Portuguese waters was not investigated yet. To evaluate the presence of phytoestrogens, phytosterols and mycotoxins in Douro River estuary, water samples were collected seasonally at nine sampling points, preconcentrated by solid phase extraction and analysed by gas chromatography mass spectrometry. Local flora was collected on the riverside, in the same sampling points, for identification and evaluation of the possible relation to the presence of phytoestrogens and/or phytosterols in the estuarine water. Results showed the ubiquitous presence of mycotoxins, namely deoxynivalenol up to 373.5 ng L(-1). Both phytoestrogens and phytosterols showed a possible seasonal fluctuation, which is in accordance to the life cycle of the local flora and agricultural practices. Physicochemical parameters were also determined for water quality evaluation. This study revealed for the first time the presence of mycotoxins and lignans in estuarine waters from Portugal, and highlights the need to consider natural contaminants in future monitoring programs.
    Archives of Environmental Contamination and Toxicology 08/2015; DOI:10.1007/s00244-015-0212-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Water samples from Vietnam, The Philippines, and Myanmar were analyzed for artificial sweeteners (ASs) and iodinated X-ray contrast media (ICMs). High concentrations (low micrograms per liter) of ASs, including aspartame, saccharin, and sucralose, were found in wastewater treatment plant (WWTP) influents from Vietnam. Three ICMs, iohexol, iopamidol, and iopromide were detected in Vietnamese WWTP influents and effluents, suggesting that these ICMs are frequently used in Vietnam. ASs and ICMs were found in river water from downtown Hanoi at concentrations comparable to or lower than the concentrations in WWTP influents. The ASs and ICMs concentrations in WWTP influents and adjacent surface water significantly correlated (r (2) = 0.99, p < 0.001), suggesting that household wastewater is discharged directly into rivers in Vietnam. Acesulfame was frequently detected in northern Vietnamese groundwater, but the concentrations varied spatially by one order of magnitude even though the sampling points were very close together. This implies that poorly performing domestic septic tanks sporadically leak household wastewater into groundwater. High acesulfame, cyclamate, saccharin, and sucralose concentrations were found in surface water from Manila, The Philippines. The sucralose concentrations were one order of magnitude higher in the Manila samples than in the Vietnamese samples, indicating that more sucralose is used in The Philippines than in Vietnam. Acesulfame and cyclamate were found in surface water from Pathein (rural) and Yangon (urban) in Myanmar, but no ICMs were found in the samples. The ASs concentrations were two-three orders of magnitude lower in the samples from Myanmar than in the samples from Vietnam and The Philippines, suggesting that different amounts of ASs are used in these countries. We believe this is the first report of persistent ASs and ICMs having ubiquitous distributions in economically emerging South Asian countries.
    Archives of Environmental Contamination and Toxicology 08/2015; DOI:10.1007/s00244-015-0220-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: The impacts of anthropogenic contaminants on marine ecosystems are a concern worldwide. Anthropogenic activities can enrich trace elements in marine biota to concentrations that may negatively impact organism health. Exposure to elevated concentrations of trace elements is considered a contributing factor in marine mammal population declines. Hawai'i is an increasingly important geographic location for global monitoring, yet trace element concentrations have not been quantified in Hawaiian cetaceans, and there is little trace element data for Pacific cetaceans. This study measured trace elements (Cr, Mn, Cu, Zn, As, Se, Sr, Cd, Sn, Hg, and Pb) in liver of 16 species of cetaceans that stranded on U.S. Pacific Islands from 1997 to 2013, using high resolution inductively coupled plasma mass spectrometry (HR-ICP-MS) (n = 31), and direct mercury analysis atomic absorption spectrometry (DMA-AAS) (n = 43). Concentration ranges (μg/g wet mass fraction) for non-essential trace elements, such as Cd (0.0031-58.93) and Hg (0.0062-1571.75) were much greater than essential trace elements, such as Mn (0.590-17.31) and Zn (14.72-245.38). Differences were found among age classes in Cu, Zn, Hg, and Se concentrations. The highest concentrations of Se, Cd, Sn, Hg, and Pb were found in one adult female false killer whale (Pseudorca crassidens) at concentrations that are known to affect health in marine mammals. The results of this study establish initial trace element concentration ranges for Pacific cetaceans in the Hawaiian Islands region, provide insights into contaminant exposure of these marine mammals, and contribute to a greater understanding of anthropogenic impacts in the Pacific Ocean.
    Archives of Environmental Contamination and Toxicology 08/2015; DOI:10.1007/s00244-015-0204-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this work was to evaluate antioxidant defence and oxidative damage in organs (liver, gills, kidney, and brain) of five fish species (Aspius aspius, Esox lucius, Sander lucioperca, Abramis brama, Rutilus rutilus) from the long-term mercury-contaminated Skalka Reservoir in the Czech Republic. Special emphasis was placed on a comprehensive assessment of the factors that may affect the antioxidant response to mercury in fish. Antioxidant enzymes (glutathione reductase, glutathione peroxidase, and glutathione-S-transferase) did not significantly respond to mercury contamination. Levels of the analysed enzymes and oxidative damage to lipids were predominantly determined by a separate organ factor or species factor, or by the combination of both (p < 0.001). Levels of total glutathione and the reduced/oxidized glutathione ratio were influenced by mercury contamination in combination with their specific organ distribution (p < 0.001). Our results suggest that species and type of organ alone or in combination are more important factors than chronic exposure to mercury contamination with respect to effects on antioxidant defence in fish under field conditions. Our findings suggest that the main antioxidant defensive mechanism in fish from the studied long-term mercury contaminated site was the inter-tissue distribution of glutathione.
    Archives of Environmental Contamination and Toxicology 08/2015; DOI:10.1007/s00244-015-0213-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: The potential impact of microplastic to zooplanktivores was assessed by measuring a ratio of neustonic microplastics to zooplankton by abundance in the southern sea of Korea. Neustonic microplastics and zooplankton (0.33-2 mm) were collected using a 330-μm mesh Manta trawl in Geoje eastern Bay and Jinhae Bay before and after the rainy season in 2012 and 2013. The mean microplastic to zooplankton ratios were 0.086 (May) and 0.022 (July) in 2012, and 0.016 (June) and 0.004 (July) in 2013, indicating that zooplanktivores could be more likely to feed on microplastics than natural preys before the rainy season in 2012 and 2013. In particular, the relatively high ratio occurred in a semi-enclosed bay characterized by a shipyard and a beach resort in Geoje Bay, and at stations close to a wastewater treatment plant and an aquaculture facility in Jinhae Bay before the rainy season. Among dominant microplastics and zooplankton before the rainy season, meroplankton of macrobenthos could be confused with paint particles in Geoje Bay, 2012, whereas Styrofoam could be mistaken as immature copepods by predators in Jinhae Bay, 2013. These observations suggest that zooplanktivores could be more likely to feed on microplastics than natural preys around Geoje and Jinhae Bays before the rainy season.
    Archives of Environmental Contamination and Toxicology 08/2015; DOI:10.1007/s00244-015-0210-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: Microplastic contamination of the marine environment is a worldwide concern. The abundance of microplastics was evaluated in the sea surface microlayer in Jinhae Bay, on the southern coast of Korea. The microplastics in this study are divided into paint resin particles and plastics by polymer type. The mean abundance of paint resin particles (94 ± 68 particles/L) was comparable to that of plastics (88 ± 68 particles/L). Fragmented microplastics, including paint resin particles, accounted for 75 % of total particles, followed by spherules (14 %), fibers (5.8 %), expanded polystyrene (4.6 %), and sheets (1.6 %). Alkyd (35 %) and poly(acrylate/styrene) (16 %) derived from ship paint resin were dominant, and the other microplastic samples consisted of polypropylene, polyethylene, phenoxy resin, polystyrene, polyester, synthetic rubber, and other polymers. The abundance of plastics was significantly (p < 0.05) higher in Jinhae Bay, which is surrounded by a coastal city, than along the east coast of Geoje, which is relatively open sea. The floating microplastic abundance in surface water was the highest reported worldwide.
    Archives of Environmental Contamination and Toxicology 08/2015; DOI:10.1007/s00244-015-0209-9