Annales Geophysicae Journal Impact Factor & Information

Publisher: European Geophysical Society, European Geosciences Union

Journal description

Prior to 2001 this journal was published by Springer. Annales Geophysicae (ANGEO) is an international, multi- and inter- disciplinary scientific journal for the publication of original articles and of short communications (Letters) for the sciences of the Sun-Earth system, including the science of Space Weather, the Solar-Terrestrial plasma physics, and the Earth's atmosphere and oceans.

Current impact factor: 1.71

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.709
2013 Impact Factor 1.676
2012 Impact Factor 1.518
2011 Impact Factor 1.842
2010 Impact Factor 1.62
2009 Impact Factor 1.648
2008 Impact Factor 1.66
2007 Impact Factor 1.427
2006 Impact Factor 1.293
2005 Impact Factor 1.45
2004 Impact Factor 1.61
2003 Impact Factor 1.031
2002 Impact Factor 1.189
2001 Impact Factor 1.199
2000 Impact Factor 1.76
1999 Impact Factor 1.727
1998 Impact Factor 1.423
1997 Impact Factor 1.245

Impact factor over time

Impact factor

Additional details

5-year impact 1.74
Cited half-life 8.30
Immediacy index 0.40
Eigenfactor 0.01
Article influence 0.80
Website Annales Geophysicae (1988) website
Other titles Annales geophysicae (Montrouge, France: 1988: Online), Annales geophysicae
ISSN 1432-0576
OCLC 41977993
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

European Geosciences Union

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors retain copyright
    • Creative Commons Attribution License 3.0
    • Eligible UK authors may deposit in OpenDepot
    • Publisher's version/PDF may be used
    • All titles are open access journals
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: We analyze the results from numerical simulations of the magnetic field, the electric field and the plasma particle dynamics at the inner geospace under the effect of solar storms and magnetospheric substorms. An orbit-following model solves for the full-particle motion, employing a dynamic, solar wind-driven geomagnetic field with a description of the electric field due to plasma convection and magnetic induction, all cast in a form suitable for implementation in computer codes. The kinematic data from the test-particle simulations is statistically analyzed over the initial plasma state, and an estimation of the charged particle fluxes from different populations and of the ensemble-averaged Dst index (based on the ring and tail current contributions) is provided. The present model may serve as the final link in a Sun-to-Earth modeling chain of major solar eruptions, providing an estimation of the inner geospace response.
    Annales Geophysicae 10/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aurorae at Jupiter are made up of many different features associated with a variety of generation mechanisms. The main auroral emission, also known as the main oval, is the most prominent of them as it accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range. The energy of the precipitating electrons is a crucial parameter to characterize the processes at play which give rise to these auroral emissions, and the altitude of the emissions directly depends on this energy. Here we make use of far-UV (FUV) images acquired with the Advanced Camera for Surveys on board the Hubble Space Telescope and spectra acquired with the Space Telescope Imaging Spectrograph to measure the vertical profile of the main emissions. The altitude of the brightness peak as seen above the limb is ~ 400 km, which is significantly higher than the 250 km measured in the post-dusk sector by Galileo in the visible domain. However, a detailed analysis of the effect of hydrocarbon absorption, including both simulations and FUV spectral observations, indicates that FUV apparent vertical profiles should be considered with caution, as these observations are not incompatible with an emission peak located at 250 km. The analysis also calls for spectral observations to be carried out with an optimized geometry in order to remove observational ambiguities.
    Annales Geophysicae 10/2015; 33(10):1211-1219. DOI:10.5194/angeo-33-1211-2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The main auroral emission at Jupiter generally appears as a quasi-closed curtain centered around the magnetic pole. This auroral feature, which accounts for approximately half of the total power emitted by the aurorae in the ultraviolet range, is related to corotation enforcement currents in the middle magnetosphere. Early models for these currents assumed axisymmetry, but significant local time variability is obvious on any image of the Jovian aurorae. Here we use far-UV images from the Hubble Space Telescope to further characterize these variations on a statistical basis. We show that the dusk side sector is ~ 3 times brighter than the dawn side in the southern hemisphere and ~ 1.1 brighter in the northern hemisphere, where the magnetic anomaly complicates the interpretation of the measurements. We suggest that such an asymmetry between the dawn and the dusk sectors could be the result of a partial ring current in the nightside magnetosphere.
    Annales Geophysicae 10/2015; 33(10):1203-1209. DOI:10.5194/angeo-33-1203-2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have applied a modified composite day analysis to the Hocking (2005) technique to study gravity wave (GW) momentum fluxes in the mesosphere and lower thermosphere (MLT). Wind measurements from almost continuous meteor radar observations during June 2004–December 2008 over São João do Cariri (Cariri; 7° S, 36° W), April 1999–November 2008 over Cachoeira Paulista (CP; 23° S, 45° W), and February 2005–December 2009 over Santa Maria (SM; 30° S, 54° W) were used to estimate the GW momentum fluxes and variances in the MLT region. Our analysis can provide monthly mean altitude profiles of vertical fluxes of horizontal momentum for short-period (less than 2–3 h) GWs. The averages for each month throughout the entire data series have shown different behavior for the momentum fluxes depending on latitude and component. The meridional component has almost the same behavior at the three sites, being positive (northward), for most part of the year. On the other hand, the zonal component shows different behavior at each location: it is positive for almost half the year at Cariri and SM but predominantly negative over CP. Annual variation in the GW momentum fluxes is present at all sites in the zonal component and also in SM at 89 km in the meridional component. The seasonal analysis has also shown a 4-month oscillation at 92.5 km over SM in the zonal component and over CP at the same altitudes but for the meridional component.
    Annales Geophysicae 09/2015; 33(9):1183-1193. DOI:10.5194/angeo-33-1183-2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Four cases (March 2009, May 2009, April 2010 and February 2012) are presented in which the ERA-interim relative humidity (RH) shows consistent increase by more than 50 % in the upper troposphere (200–250 hPa) over tropics at the eastward side of the potential vorticity (PV) intrusion region. The increase in RH is confirmed with the spaceborne microwave limb sounder observations and radiosonde observations over Gadanki (13.5° N, 79.2° E) and is observed irrespective of whether the PV intrusions are accompanied by deep convection or not. It is demonstrated that the increase in RH is due to poleward advection induced by the PV intrusions in their eastward side at the upper tropospheric heights. It is suggested that the low-latitude convection, which is not necessarily triggered by the PV intrusion, might have transported water vapour to the upper tropospheric heights.
    Annales Geophysicae 09/2015; 33(9):1081-1089. DOI:10.5194/angeo-33-1081-2015
  • V. A. Sergeev · S. A. Chernyaeva · S. V. Apatenkov · N. Y. Ganushkina · S. V. Dubyagin
    [Show abstract] [Hide abstract]
    ABSTRACT: Non-adiabatic motion of plasma sheet protons causes pitch-angle scattering and isotropic precipitation to the ionosphere, which forms the proton auroral oval. This mechanism related to current sheet scattering (CSS) provides a specific energy–latitude dispersion pattern near the equatorward boundary of proton isotropic precipitation (isotropy boundary, IB), with precipitation sharply decreasing at higher (lower) latitude for protons with lower (higher) energy. However, this boundary maps to the inner magnetosphere, where wave-induced scattering may provide different dispersion patterns as recently demonstrated by Liang et al. (2014). Motivated by the potential usage of the IBs for the magnetotail monitoring as well as by the need to better understand the mechanisms forming the proton IB, we investigate statistically the details of particle flux patterns near the proton IB using NOAA-POES polar spacecraft observations made during September 2009. By comparing precipitated-to-trapped flux ratio (J0/J90) at >30 and >80 keV proton energies, we found a relatively small number of simple CSS-type dispersion events (only 31 %). The clear reversed (wave-induced) dispersion patterns were very rare (5 %). The most frequent pattern had nearly coinciding IBs at two energies (63 %). The structured precipitation with multiple IBs was very frequent (60 %), that is, with two or more significant J0/J90 dropouts. The average latitudinal width of multiple IB structures was about 1°. Investigation of dozens of paired auroral zone crossings of POES satellites showed that the IB pattern is stable on a timescale of less than 2 min (a few proton bounce periods) but can evolve on a longer (several minutes) scale, suggesting temporal changes in some mesoscale structures in the equatorial magnetosphere. We discuss the possible role of CSS-related and wave-induced mechanisms and their possible coupling to interpret the emerging complicated patterns of proton isotropy boundaries.
    Annales Geophysicae 08/2015; 33(8):1059-1070. DOI:10.5194/angeo-33-1059-2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, interannual variability of tropospheric air temperatures over the Asian summer monsoon region during the pre-monsoon months is examined in relation to Indian summer monsoon rainfall (ISMR; June to September total rainfall). For this purpose, monthly grid-point temperatures in the entire troposphere over the Asian summer monsoon region and ISMR data for the period 1949–2012 have been used. Spatial correlation patterns are investigated between the temperature field in the lower tropospheric levels during May over the Asian summer monsoon region and ISMR. The results indicate a strong and significant northwest–southeast dipole structure in the spatial correlations over the Indian region, with highly significant positive (negative) correlations over the regions of north India and the western Tibetan Plateau region – region R1 (north Bay of Bengal: region R2). The observed dipole is seen significantly up to a level of 850 hPa and eventually disappears at 700 hPa. Thermal indices evaluated at 850 hPa level, based on average air temperatures over the north India and western Tibetan Plateau region (TI1) and the north Bay of Bengal region (TI2) during May, show a strong, significant relationship with the ISMR. The results are found to be consistent and robust, especially in the case of TI1 during the period of analysis. A physical mechanism for the relationship between these indices and ISMR is proposed. Finally the composite annual cycle of tropospheric air temperature over R1 during flood/drought years of ISMR is examined. The study brings out the importance of the TI1 in the prediction of flood/drought conditions over the Indian subcontinent.
    Annales Geophysicae 08/2015; 33(8):1051-1058. DOI:10.5194/angeo-33-1051-2015
  • P. Pavan Chaitanya · A. K. Patra · N. Balan · S. V. B. Rao
    [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we analyze daytime observations of the critical frequencies of the F2 (foF2) and F3 (foF3) layers based on ionosonde observations made from Indian low latitudes close to the magnetic equator and study their local time, seasonal, planetary-scale variations (including the solar rotation effect), and solar activity dependence. Given the occurrence of the F3 layer, which has remarkable local time, seasonal and solar activity dependences, variations in foF2 have been evaluated. Local time variations in foF2 and foF3 show noon "bite-out" in all seasons and in all solar activity conditions, which are attributed to vertically upward plasma transport by the zonal electric field and meridional neutral wind. Comparison of observed foF2 with those of the IRI-2012 model clearly shows that the model values are always higher than observed values and the largest difference is observed during noontime owing to the noon bite-out phenomenon. Peak frequency of the F layer (foF2 / foF3), however, is found to have better agreement with IRI-2012 model. Seasonal variations of foF2 and foF3 show stronger asymmetry at the solstices than at the equinoxes. The strong asymmetry at the solstice is attributed to the asymmetry in the meridional neutral wind with a secondary contribution from E × B drifts, and the relatively weak asymmetry observed at the equinox is attributed to the asymmetry in E × B drifts. Variations in foF2 and foF3 with solar flux clearly show the saturation effect when F10.7 exceeds ~ 120 sfu, which is different from that of the mid-latitudes. Irrespective of solar flux, both foF2 and foF3 in summer, however, are found to be remarkably lower than those observed in other seasons. Variations in foF2 show dominant periods of ~ 27, ~ 16 and ~ 6 days. Intriguingly, amplitudes of ~ 27-day variations in foF2 are found to be maximum in low solar activity (LSA), moderate in medium solar activity (MSA) and minimum in high solar activity (HSA), while the amplitudes of ~ 27-day variations in F10.7 are minimum in LSA, moderate in MSA and maximum in HSA. These results are presented and discussed in light of current observational and model-based knowledge on the variations of low-latitude foF2 and foF3.
    Annales Geophysicae 08/2015; 33(8):997-1006. DOI:10.5194/angeo-33-997-2015
  • M. W. Liemohn · R. M. Katus · R. Ilie
    [Show abstract] [Hide abstract]
    ABSTRACT: Currents from the Hot Electron and Ion Drift Integrator (HEIDI) inner magnetospheric model results for all of the 90 intense storms (disturbance storm-time (Dst) minimum < −100 nT) from solar cycle 23 (1996–2005) are calculated, presented, and analyzed. We have categorized these currents into the various systems that exist in near-Earth space, specifically the eastward and westward symmetric ring current, the partial ring current, the banana current, and the tail current. The current results from each run set are combined by a normalized superposed epoch analysis technique that scales the timeline of each phase of each storm before summing the results. It is found that there is a systematic ordering to the current systems, with the asymmetric current systems peaking during storm main phase (tail current rising first, then the banana current, followed by the partial ring current) and the symmetric current systems peaking during the early recovery phase (westward and eastward symmetric ring current having simultaneous maxima). The median and mean peak amplitudes for the current systems ranged from 1 to 3 MA, depending on the setup configuration used in HEIDI, except for the eastward symmetric ring current, for which the mean never exceeded 0.3 MA for any HEIDI setup. The self-consistent electric field description in HEIDI yielded larger tail and banana currents than the Volland–Stern electric field, while the partial and symmetric ring currents had similar peak values between the two applied electric field models.
    Annales Geophysicae 08/2015; 33(8):965-982. DOI:10.5194/angeo-33-965-2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have quantitatively evaluated generation mechanisms of a sporadic sodium layer (SSL) based on observational data obtained by multiple instruments at a high-latitude station: Ramfjordmoen, Tromsø, Norway (69.6° N, 19.2° E). The sodium lidar observed an SSL at 21:18 UT on 22 January 2012. The SSL was observed for 18 min, with a maximum sodium density of about 1.9 × 1010 m−3 at 93 km with a 1.1 km thickness. The European Incoherent Scatter (EISCAT) UHF radar observed a sporadic E layer (Es layer) above 90 km from 20:00 to 23:00 UT. After 20:00 UT, the Es layer gradually descended and reached 94 km at 21:18 UT when the SSL appeared at the same altitude. In this event, considering the abundance of sodium ions (10 % or less), the Es layer could provide only about 37 % or less of the sodium atoms to the SSL. We have investigated a temporal development of the normal sodium ion layer with a consideration of chemical reactions and the effect of the (southwestward) electric field using observational values of the neutral temperature, electron density, horizontal neutral wind, and electric field. This calculation has shown that those processes, including contributions of the Es layer, would provide about 88 % of sodium atoms of the SSL. The effects of meteor absorption and auroral particle sputtering appear to be less important. Therefore, we have concluded that the major source of the SSL was sodium ions in a normal sodium ion layer. Two processes – namely the downward transportation of sodium ions from a normal sodium ion layer due to the electric field and the additional supply of sodium ions from the Es layer under relatively high electron density conditions (i.e., in the Es layer) – played a major role in generating the SSL in this event. Furthermore, we have found that the SSL was located in a lower-temperature region and that the temperature inside the SSL did not show any remarkable temperature enhancements.
    Annales Geophysicae 08/2015; 33(8):941-953. DOI:10.5194/angeo-33-941-2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigates the synoptic conditions favorable to wildfires in the Mediterranean region, in terms of fire intensity and burnt area. As reported in the literature, Mediterranean large wildfires are associated with a blocking situation. However, this study shows the existence of two types of wildfires controlled by the blocking high intensity: (1) fast build-up of a weak blocking produces intense wildfires associated with strong winds which allow propagation over long distances; (2) longer build-up of strong blocking situation produces less intense wildfires associated with weaker winds which also propagate over long distances. Another major step forward of this study in the understanding of the drivers of those wildfires is the evidence of a perfect match between the period of wildfire activity and the persistence of the favorable synoptic conditions: the wildfire activity starts at the onset of the blocking situation and ends with the transition to a less favorable synoptic weather pattern. Such strong control of the wildfire activity by the concomitant weather is a very promising result regarding fire risk management, especially considering the accidental nature of the Mediterranean wildfires.
    Annales Geophysicae 07/2015; 33(7). DOI:10.5194/angeo-33-931-2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: We discuss the properties of Saturn planetary period oscillations (PPOs) deduced from analysis of Saturn kilometric radiation (SKR) modulations by Fischer et al. (2014), and from prior analysis of magnetic field oscillations data by Andrews et al. (2012) and Provan et al. (2013), with emphasis on the post-equinox interval from early 2010 to early 2013. Fischer et al. (2014) characterize this interval as showing single phase-locked periods in the northern and southern SKR modulations observed in polarization-separated data, while the magnetic data generally show the presence of separated dual periods, northern remaining shorter than southern. We show that the single SKR period corresponds to the southern magnetic period early in 2010, segues into the northern period in late 2010, and returns to the southern period in mid-2012, approximately in line with changes in the dominant magnetic oscillation. An exception occurs in mid-February to late August 2011 when two periods are again discerned in SKR data, in good agreement with the ongoing dual periods in the magnetic data. Fischer et al. (2014) discuss this change in terms of a large jump in the southern SKR period related to the Great White Spot storm, which the magnetic data show is primarily due instead to a reappearance in the SKR data of the ongoing southern modulation in a transitory interval of resumed southern dominance. In the earlier interval from early April 2010 to mid-February 2011 when Fischer et al. (2014) deduce single phase-locked periods, we show unequivocal evidence in the magnetic data for the presence of separated dual oscillations of approximately equal amplitude. We suggest that the apparent single SKR periods result from a previously reported phenomenon in which modulations associated with one hemisphere appear in polarization-separated data associated with the other. In the following interval, mid-August 2011 to early April 2012, when Fischer et al. (2014) again report phase-locked northern and southern oscillations, no ongoing southern oscillation of separate period is discerned in the magnetic data. However, the magnetic amplitude data show that if a phase-locked southern oscillation is indeed present, its amplitude must be less than ~ 5–10 % of the northern oscillation.
    Annales Geophysicae 07/2015; 33(7):901-912. DOI:10.5194/angeo-33-901-2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The equation for the diffusion velocity in the mesosphere and the lower thermosphere (MLT) includes the terms for molecular and eddy diffusion. These terms are very similar. For the first time, we show that, by using the similarity theory, the same formula can be obtained for the eddy diffusion coefficient as the commonly used formula derived by Weinstock (1981). The latter was obtained by taking, as a basis, the integral function for diffusion derived by Taylor (1921) and the three-dimensional Kolmogorov kinetic energy spectrum. The exact identity of both formulas means that the eddy diffusion and heat transport coefficients used in the equations, both for diffusion and thermal conductivity, must meet a criterion that restricts the outer eddy scale to being much less than the scale height of the atmosphere. This requirement is the same as the requirement that the free path of molecules must be much smaller than the scale height of the atmosphere. A further result of this criterion is that the eddy diffusion coefficients Ked, inferred from measurements of energy dissipation rates, cannot exceed the maximum value of 3.2 × 106 cm2 s-1 for the maximum value of the energy dissipation rate of 2 W kg-1 measured in the mesosphere and the lower thermosphere (MLT). This means that eddy diffusion coefficients larger than the maximum value correspond to eddies with outer scales so large that it is impossible to use these coefficients in eddy diffusion and eddy heat transport equations. The application of this criterion to the different experimental data shows that some reported eddy diffusion coefficients do not meet this criterion. For example, the large values of these coefficients (1 × 107 cm2 s-1) estimated in the Turbulent Oxygen Mixing Experiment (TOMEX) do not correspond to this criterion. The Ked values inferred at high latitudes by Lübken (1997) meet this criterion for summer and winter polar data, but the Ked values for summer at low latitudes are larger than the Ked maximum value corresponding to the criterion. Analysis of the experimental data on meteor train observations shows that energy dissipation with a small rate of about 0.2 W kg-1 sometimes can induce turbulence with eddy scales very close to the scale height of the atmosphere. Our results also explain the discrepancy between the large cooling rates calculated by Vlasov and Kelley (2014) and the temperatures given by the MSIS-E-90 model because, in these cases, the measured eddy diffusion coefficients used in calculating the cooling rates are larger than the maximum value presented above.
    Annales Geophysicae 07/2015; 33(7):857-864. DOI:10.5194/angeo-33-857-2015
  • [Show abstract] [Hide abstract]
    ABSTRACT: The diurnal tide (DT) and its variability in the lower atmosphere over Chongyang (114.14° E, 29.53° N) were studied based on the newly established Wuhan University (WHU) VHF radar observations with the height intervals of 0.145 km (below 9 km) and 0.58 km (above 9 km) in the whole year of 2012. We find that the DT was the dominant tidal component and showed remarkable height and season variations. A prominent seasonally dependent height variability characteristic is that maximum DT amplitude usually occurs around 6 km in the winter and spring months, which might be due to the tidal wave energy concentration arising from the reflections from the strong eastward tropospheric jet around 13 km and the ground surface. Our results suggest that the background wind is a crucial cause for height variability and seasonal variability of DT. In April 2012, a notable strengthening of DT is observed. Meanwhile, the significant higher harmonics of tides, i.e., the semidiurnal, terdiurnal, and even quarterdiurnal tides, can also be observed, which has seldom been reported. Interestingly, these four tidal components displayed consistent short-term variability, implying that they were excited by the same dramatically varying tidal source. In addition, we identified two symptoms of the coupling of DT and planetary waves (PWs), which can also lead to the short-term DT variability. One is the sum and difference interactions between DT and PWs, causing the tidal amplitude short-term variability as a consequence of the energy exchange among the interacting waves. The other one is the modulation of DT by PWs, leading to that the amplitude of DT varies with the periods of the PWs.
    Annales Geophysicae 07/2015; 33(7):865-874. DOI:10.5194/angeo-33-865-2015