Annales Geophysicae (Ann Geophys )

Publisher: European Geophysical Society, Springer Verlag

Description

Prior to 2001 this journal was published by Springer. Annales Geophysicae (ANGEO) is an international, multi- and inter- disciplinary scientific journal for the publication of original articles and of short communications (Letters) for the sciences of the Sun-Earth system, including the science of Space Weather, the Solar-Terrestrial plasma physics, and the Earth's atmosphere and oceans.

  • Impact factor
    1.52
  • 5-year impact
    1.63
  • Cited half-life
    7.30
  • Immediacy index
    0.26
  • Eigenfactor
    0.02
  • Article influence
    0.77
  • Website
    Annales Geophysicae (1988) website
  • Other titles
    Annales geophysicae (Montrouge, France: 1988: Online), Annales geophysicae
  • ISSN
    1432-0576
  • OCLC
    41977993
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as arXiv.org
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: We report and analyse the characteristics of 1382 meteor trails based on a sodium data set of �680 h. The observations were made at Yanqing (115.97� E, 40.47� N), China by a ground-based Na fluorescence lidar. The temporal resolution of the raw profiles is 1.5 s and the altitude resolution is 96 m. We discover some characteristics of meteor trails different from those presented in previous reports. The occurrence heights of the trails follow a double-peak distribution with the peaks at �83.5 km and at �95.5 km, away from the peak height of the regular Na layer. 4.7% of the trails occur below 80 km, and 3.25% above 100 km. 75% of the trails are observed in only one 1.5 s profile, suggesting that the dwell time in the laser beam is not greater than 1.5 s. The peak density of the trails as a function of height is similar to that of the background sodium layer. The raw occurrence height distribution is corrected taking account of three factors which affect the relative lifetime of a trail as a function of height: the meteoroid velocity (which controls the ratio of Na / Na+ ablated); diffusional spreading of the trail; and chemical removal of Na. As a result, the bi-modal distribution is more pronounced. Modelling results show that the higher peak corresponds to a meteoroid population with speeds between 20 and 30 km s−1, whereas the lower peak should arise from much slower particles in a near-prograde orbit. It is inferred that most meteoroids in this data set have masses of �1 mg, in order for ablation to produce sufficient Na atoms to be detected by lidar. Finally, the evolution of longer-duration meteor trails is investigated. Signals at each altitude channel consist of density enhancement bursts with the growth process usually faster than the decay process, and there exists a progressive phase shift among these altitude channels.
    Annales Geophysicae 10/2014; 32:1321-1332.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The wave statistical parameters during Cyclone Phailin which crossed the northern Bay of Bengal are described based on the Directional Waverider buoy-measured wave data from 8 to 13 October 2013. On 12 October 2013, the cyclone passed within 70 km of the Waverider buoy location with a wind speed of 59.2 m s−1 (115 knots), and during this period, a maximum significant wave height of 7.3 m and a maximum wave height of 13.5 m were measured at 50 m water depth. Eight freak wave events are observed during the study period. The ratio of the maximum wave height to significant wave height recorded is found to be higher than the theoretical value and the ratio of the crest height to wave height during the cyclone was 0.6 to 0.7. The characteristics of the wave spectra before and after the cyclone is studied and found that the high-frequency face of the wave spectrum is proportional to f−3 before the cyclone and is between f−4 and f−5 during the cyclone period.
    Annales Geophysicae 09/2014;
  • Annales Geophysicae 08/2014; 32:1059-1071.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper we develop a new method for the analysis of excitation and propagation of planetary electromagnetic waves (PEMW) in the ionosphere of the Earth. The nonlinear system of equations for PEMW, valid for any height, from D to F regions, including intermediate altitudes between D and E and between E and F regions, is derived. In particular, we have found the system of nonlinear one-fluid MHD equations in the β-plane approximation valid for the ionospheric F region (Aburjania et al., 2003a, 2005). The series expansion in a "small" (relative to the local geomagnetic field) non-stationary magnetic field has been applied only at the last step of the derivation of the equations. The small mechanical vertical displacement of the media is taken into account. We have shown that obtained equations can be reduced to the well-known system with Larichev-Reznik vortex solution in the equatorial region (see e.g. Aburjania et al., 2002). The excitation of planetary electromagnetic waves by different initial perturbations has been investigated numerically. Some means for the PEMW detection and data processing are discussed.
    Annales Geophysicae 03/2014; 32(4).
  • Annales Geophysicae 03/2014; 32:207-222.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We examine the effectiveness of nonuniform, quasistatic, transverse electric fields that are often observed in the auroral region in destabilization of inhomogeneous energy-density-driven (IEDD) waves. Specifically, the IEDD dispersion relation of Ganguli et al. (1985a, b) is evaluated for an electric field structure observed by the FAST satellite in the auroral ionosphere at 1000 km altitude. The background field-aligned current, plasma density and ion composition are derived from FAST observations. Other input parameters adopted in the calculations are varied in pertinent ranges. Unstable solutions are obtained that indicate a variety of frequencies and perpendicular wavelengths. These can manifest as a broadband spectrum of IEDD waves.
    Annales Geophysicae 01/2014; 32(1):1-6.