Brain Behavior and Evolution (Brain Behav Evol )

Publisher: Karger


Brain, Behavior and Evolutioní is a journal with a loyal following, high standards, and a unique identity as the main outlet for the continuing scientific discourse on the structure, function and evolution of the nervous system. Our goal for the Journal is to embrace the whole universe of disciplines from neuroscience to behavioral ecology that contribute to understanding nervous system evolution, and to encourage the application of cutting-edge techniques from all of them to advance this understanding. The journal publishes comparative neurobiological studies that focus on the morphology, physiology, and histochemistry of various neural structures, as well as aspects of psychology, ecology, and ethology in both vertebrates and invertebrates as they relate to nervous system structure, function, and evolution. In addition to original research reports, the journal contains review and theory papers. One issue each year is devoted to the proceedings of the annual Karger Workshop. This issue includes a series of related review papers on a current topic in the area of comparative neurobiology and the evolution of the brain and behavior.

  • Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    Brain, Behavior and Evolution website
  • Other titles
    Brain, behavior and evolution (Online)
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • On author or institutional server
    • Server must be non-commercial
    • Publisher's version/PDF cannot be used, unless Authors Choice fee is paid
    • Publisher copyright and source must be acknowledged
    • Must link to publisher version
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The factors leading to the evolution of large brain size remain controversial. Brains are metabolically expensive and larger brains demand higher maintenance costs. The expensive-tissue hypothesis suggests that when selection favors larger brains, evolutionary changes in brain size can occur without an overall increase in energetic costs when brain size represents a trade-off with the size of other expensive tissues, such as the digestive tract. Still, support for this hypothesis is equivocal. We compared mean brain mass, digestive tract mass (stomach and gut) and heart mass in 9 populations of black-capped chickadees along a gradient of winter climate severity. Mean brain mass and telencephalon volume showed significant population variation with larger brains associated with harsher winter conditions. Mean population brain mass and telencephalon volume were also negatively related to both stomach and gut mass. Mean population heart mass, on the other hand, was not significantly associated with either mean brain mass or winter climate severity. Mean brain mass was negatively associated with body mass, with chickadees from harsher environments being smaller but having larger brains and smaller digestive tracts. Our results are consistent with the expensive-tissue hypothesis, and suggest that a harsher winter climate might favor larger brains, which might be associated with a reduction in size of the digestive tract. These findings could potentially be a result of population differences in the winter climate diet related to the perishability of more efficient invertebrate-based food caches. © 2014 S. Karger AG, Basel.
    Brain Behavior and Evolution 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Across vertebrates, there is a broad correlation between neuroanatomy and the type of habitat preferred by a species. In general, species occupying habitats classified as more structurally complex have relatively larger brains and exaggerated structures related to navigating and exploiting those habitats. We empirically measured the structural habitat complexity of six species of Puerto Rican Anolis lizards, which have traditionally been classified as occupying three distinct habitat types. We also measured the volume of the whole brain as well as six structures putatively related to exploiting complex habitats in these species. We found a significant interspecific variation in structural habitat complexity, including a substantial variation between those belonging to the same ecomorph category. Despite this, we found no evidence to support the hypothesis that interspecific differences in habitat preferences, particularly differences in the relative structural complexity of those habitats, can favor a divergence in neuroanatomy. However, our findings indicate that, at a finer scale, species preferences for structural habitats vary greatly between Anolis species belonging to the same ecomorph category. This variation might contribute to the community structure of anoles by allowing multiple sympatric species of the same ecomorph category to occupy what, at a coarse scale, appears to be the same structural niche. We propose that, in the case of arboreal species, differences in the complexity of arboreal habitats alone may not be sufficient to favor divergent brain evolution. © 2014 S. Karger AG, Basel.
    Brain Behavior and Evolution 07/2014;
  • Brain Behavior and Evolution 07/2014;
  • Brain Behavior and Evolution 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of the visual system in anamniotic vertebrates is a continual process, allowing for ontogenetic changes in retinal topography and spatial resolving power. We examined the number and distribution of retinal ganglion cells in wholemounted retinae throughout the protracted embryonic development (∼5 months) of a chondrichthyan, i.e. the brown-banded bamboo shark Chiloscyllium punctatum, from the beginning of retinal cell differentiation (approximately halfway through embryogenesis) to adulthood. We also identified and quantified the number of apoptosed cells within the ganglion cell layer to evaluate the contribution of apoptosis to changes in retinal topography. C. punctatum undergoes rapid changes in ganglion cell distribution during embryogenesis, where high levels of apoptosis, especially around the retinal periphery, result in relative increases in ganglion cell density in the central retina which progressively extend nasally and temporally to form a meridional band at hatching. After hatching, C. punctatum forms and maintains a horizontal streak, showing only minor changes in topography during growth, with basal levels of apoptosis. The total number of retinal ganglion cells reaches 547,881 in adult sharks, but the mean (3,228 cells·mm(-2)) and peak (4,983 cells·mm(-2)) retinal ganglion cell densities are highest around the time of hatching. Calculated estimates of spatial resolving power, based on ganglion cell spacing (assuming a hexagonal mosaic) and assessment of the focal length from cryosections of the eye, increase from 1.47 cycles·degree(-1) during embryogenesis to 4.29 cycles·degree(-1) in adults. The increase in spatial resolving power across the retinal meridian would allow this species to hunt and track faster, more mobile prey as it reaches maturity. © 2014 S. Karger AG, Basel.
    Brain Behavior and Evolution 07/2014;
  • Brain Behavior and Evolution 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Frequency alternation in the echolocation of insectivorous bats has been interpreted in relation to ranging and duty cycle, i.e. advantages for echolocation. The shifts in frequency of the calls of these so-called two-tone bats, however, may also play its role in the success of their hunting behavior for a preferred prey, the tympanate moth. How the auditory receptors (e.g. the A1 and A2 cells) in the moth's ear detect such frequency shifts is currently unknown. Here, we measured the auditory responses of the A1 cell in the noctuid Spodoptera frugiperda to the echolocation hunting sequence of Molossus molossus, a two-tone bat. We also manipulated the bat calls to control for the frequency shifts by lowering the frequency band of the search and approach calls. The firing response of the A1 receptor cell significantly decreases with the shift to higher frequencies during the search and approach phases of the hunting sequence of M. molossus; this could be explained by the receptor's threshold curve. The frequency dependence of the decrease in the receptor's response is supported by the results attained with the manipulated sequence: search and approach calls with the same minimum frequency are detected by the moth at the same threshold intensity. The two-tone bat M. molossus shows a call frequency alternation behavior that may enable it to overcome moth audition even in the mid-frequency range (i.e. 20-50 kHz) where moths hear best. © 2014 S. Karger AG, Basel.
    Brain Behavior and Evolution 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In female grasshoppers, oviposition is a highly specialized behavior involving a rhythm-generating neural circuit, the oviposition central pattern generator, unusual abdominal appendages, and dedicated muscles. This study of Schistocerca americana (Drury) grasshoppers was undertaken to determine whether the simpler pregenital abdominal segments, which do not contain ovipositor appendages, share common features with the genital segment, suggesting a roadmap for the genesis of oviposition behavior. Our study revealed that although 5 of the standard pregenital body wall muscles were missing in the female genital segment, homologous lateral nerves were, indeed, present and served 4 ovipositor muscles. Retrograde labeling of the corresponding pregenital nerve branches in male and female grasshoppers revealed motor neurons, dorsal unpaired median neurons, and common inhibitor neurons which appear to be structural homologues of those filled from ovipositor muscles. Some pregenital motor neurons displayed pronounced contralateral neurites; in contrast, some ovipositor motor neurons were exclusively ipsilateral. Strong evidence of structural homology was also obtained for pregenital and ovipositor skeletal muscles supplied by the identified neurons and of the pregenital and ovipositor skeletons. For example, transient embryonic segmental appendages were maintained in the female genital segments, giving rise to ovipositor valves, but were lost in pregenital abdominal segments. Significant proportional differences in sternal apodemes and plates were observed, which partially obscure the similarities between the pregenital and genital skeletons. Other changes in reorganization included genital muscles that displayed adult hypertrophy, 1 genital muscle that appeared to represent 2 fused pregenital muscles, and the insertion points of 2 ovipositor muscles that appeared to have been relocated. Together, the comparisons support the idea that the oviposition behavior of genital segments is built upon a homologous, segmentally iterated motor infrastructure located in the pregenital abdomen of male and female grasshoppers. © 2014 S. Karger AG, Basel.
    Brain Behavior and Evolution 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the evolution of a relatively large brain size in haplorhine primates (i.e. tarsiers, monkeys, apes, and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in synaptosomal fractions from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoform LDH-B among haplorhines as compared to strepsirrhines (i.e. lorises and lemurs), while in the total homogenate of the neocortex and striatum there was no significant difference in LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, with an especially remarkable elevation in the ratio of LDH-B/LDH-A in humans. The phylogenetic variation in the ratio of LDH-B/LDH-A was correlated with species-typical brain mass but not the encephalization quotient. A significant LDH-B increase in the subneuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is a differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement. © 2014 S. Karger AG, Basel.
    Brain Behavior and Evolution 03/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several species of the most diverse avian order, Passeriformes, specialize in foraging on passive prey, although relatively little is known about their visual systems. We tested whether some components of the visual system of the American goldfinch (Spinus tristis), a granivorous bird, followed the profile of species seeking passive food items (small eye size relative to body mass, narrow binocular fields and blind areas, centrally located retinal specialization projecting laterally, ultraviolet-sensitive vision). We measured eye size, visual field configuration, the degree of eye movement, variations in the density of ganglion cells and cone photoreceptors, and the sensitivity of photoreceptor visual pigments and oil droplets. Goldfinches had relatively large binocular (46°) and lateral (134°) visual fields with a high degree of eye movement (66° at the plane of the bill). They had a single centrotemporally located fovea that projects laterally, but can be moved closer to the edge of the binocular field by converging the eyes. Goldfinches could also increase their panoramic vision by diverging their eyes while handling food items in head-up positions. The distribution of photoreceptors indicated that the highest density of single and double cones was surrounding the fovea, making it the center of chromatic and achromatic vision and motion detection. Goldfinches possessed a tetrachromatic ultraviolet visual system with visual pigment peak sensitivities of 399 nm (ultraviolet-sensitive cone), 442 nm (short-wavelength-sensitive cone), 512 nm (medium-wavelength-sensitive cone), and 580 nm (long-wavelength-sensitive cone). Overall, the visual system of American goldfinches showed characteristics of passive as well as active prey foragers, with a single-fovea configuration and a large degree of eye movement that would enhance food searching and handling with their relatively wide binocular fields. © 2014 S. Karger AG, Basel.
    Brain Behavior and Evolution 03/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous comparative research has attributed interspecific variation in eye size among mammals to selection related to visual acuity. Mammalian species have also been hypothesized to differ in visual acuity partly as a result of differences in ecology. While a number of prior studies have explored ecological and phylogenetic effects on eye shape, a broad comparative analysis of the relationships between visual acuity, eye size and ecology in mammals is currently lacking. Here we use phylogenetic comparative methods to explore these relationships in a taxonomically and ecologically diverse sample of 91 mammal species. These data confirm that axial eye length and visual acuity are significantly positively correlated in mammals. This relationship conforms to expectations based on theoretical optics and prior analyses of smaller comparative samples. Our data also demonstrate that higher visual acuity in mammals is associated with: (1) diurnality and (2) predatory habits once the effects of eye size and phylogeny have been statistically controlled. These results suggest that interspecific variation in mammalian visual acuity is the result of a complex interplay between phylogenetic history, visual anatomy and ecology. © 2014 S. Karger AG, Basel.
    Brain Behavior and Evolution 02/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cladistians (Polypteriformes) are currently considered basal to other living ray-finned fishes (actinopterygians), and their brain organization is therefore critical to providing information about the primitive neural characters that existed in the earliest ray-finned fishes. The organization of the serotonergic system in the brain has been carefully analyzed in most vertebrate groups, and in the present study we provide the first detailed information on the distribution of serotonergic cell bodies and fibers in the central nervous system of representative species of the two extant genera of cladistians, i.e. Polypterus senegalus and Erpetoichthys calabaricus, by means of immunohistochemistry against serotonin (5-HT). Distinct groups of immunoreactive cells were detected in the preoptic area, the hypothalamic paraventricular organ, the pineal organ, the pretectal region, the long column of the raphe in the rhombencephalic midline, the spinal cord, and amacrine cells in the inner nuclear layer of the retina. Fiber labeling was widely distributed in all main brain subdivisions but was more abundant in distinct pallial and subpallial areas, the preoptic area, the thalamus, the optic tectum, the tori semicircularis and lateralis, the rhombencephalic reticular formation, the nucleus of the solitary tract, and the dorsal aspect of the spinal cord. Our analysis makes it possible to establish which serotonergic structures characterized the earliest ray-finned fishes, and a comparison of these results with those from other classes of vertebrates, including a segmental analysis to correlate cell populations, reveals that most characteristics, such as the presence of serotonergic cells in the preoptic area and the basal hypothalamus, are preserved in all anamniotes. However, this system seems to be reduced in amniotes, mainly mammals, although important features are shared, such as the presence of serotonergic cells in the pineal organ, the retina, and the raphe nuclei. © 2014 S. Karger AG, Basel.
    Brain Behavior and Evolution 02/2014;
  • Brain Behavior and Evolution 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Coral reef fish present the human observer with an array of bold and contrasting patterns; however, the ability of such fish to perceive these patterns is largely unexamined. To understand this, the visual acuity of these animals - the degree to which they can resolve fine detail - must be ascertained. Behavioural studies are few in number and anatomical analysis has largely focused on estimates of ganglion cell density to predict the visual acuity in coral reef fish. Here, we report visual acuity measures for the triggerfish Rhinecanthus aculeatus. Acuity was first assessed using a series of behavioural paradigms and the figures were then contrasted with those obtained anatomically, based on photoreceptor and ganglion cell counts. Behavioural testing indicated an upper behavioural acuity of 1.75 cycles·degree(-1), which is approximately the same level of acuity as that of the goldfish (Carassiusauratus). Anatomical estimates were then calculated from wholemount analysis of the photoreceptor layer and Nissl staining of cells within the ganglion cell layer. Both of these anatomical measures gave estimates that were substantially larger (7.75 and 3.4 cycles·degree(-1) for the photoreceptor cells and ganglion cells, respectively) than the level of acuity indicated by the behavioural tests. This indicates that in this teleost species spatial resolution is poor compared to humans (30-70 cycles·degree(-1)) and it is also not well indicated by anatomical estimates. © 2014 S. Karger AG, Basel.
    Brain Behavior and Evolution 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the vertebrate nervous system, the Ca(2+)-binding proteins parvalbumin, calbindin and calretinin have been extensively used to elaborate the molecular diversity of neuronal subtypes. Secretagogin is a phylogenetically conserved Ca(2+)-binding protein, which marks neuronal populations largely distinct from other Ca(2+)-binding proteins in mammals. Whether secretagogin is expressed in nonmammalian vertebrates, particularly in birds, and, if so, with a brain cytoarchitectonic design different from that of mammals is unknown. Here, we show that secretagogin is already present in the hatchlings' brain with continued presence into adulthood. Secretagogin-immunoreactive neurons primarily accumulate in the olfactory bulb, septum, subpallial amygdala, hippocampus, hypothalamus, habenular nuclei and deep layers of the optic tectum of adult domestic chicks (Gallus domesticus). In the olfactory bulb, secretagogin labels periglomerular neurons as well as a cell continuum ascending dorsomedially, reaching the ventricular wall. Between the hippocampus and septal nuclei, the interconnecting thin septal tissue harbors secretagogin-immunoreactive neurons that contact the ventricular wall with their ramifying dendritic processes. Secretagogin is also present in the neuroendocrine hypothalamus, with particularly rich neuronal clusters seen in its suprachiasmatic and infundibular nuclei. Secretagogin expression identified a hitherto undescribed cell contingent along intratelencephalic cell-free laminae separating brain regions or marking the palliosubpallial boundary, as well as a dense neuronal population in the area corticoidea lateralis. In both the telencephalon and midbrain, secretagogin complemented the distribution of the canonical 'neuronal' Ca(2+)-binding proteins. Our findings identify novel neuronal subtypes, connectivity patterns in brain areas functionally relevant to olfaction, orientation, behavior as well as endocrine functions, which will help refine existing concepts on the neuronal diversity and organizational principles of the avian brain. © 2014 S. Karger AG, Basel.
    Brain Behavior and Evolution 01/2014; 83(2):82-92.
  • Article: Preface.
    Brain Behavior and Evolution 01/2014; 83(2):81.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Prey-catching behavior (PCB) of the frog consists of a sequence of movements as a stimulus-response chain of the behavioral pattern in which each action presents a signal for the subsequent event. The transformation of visual information into appropriate spatiotemporal patterns of motor activity is carried out by the motor pattern generators located in the brainstem reticular formation. The motor pattern generators provide input to the motoneurons either directly or via the last-order premotor interneurons (LOPI). Although the feeding program is predetermined in this way, various sensory mechanisms control the motor activity. By using neuronal labeling methods, we have studied the morphological details of sensorimotor integration related to the hypoglossal motoneurons to provide further insight into the neuronal circuits underlying the PCB in ranid frogs. Our major findings are as follows. (1) Dendrodendritic and dendrosomatic contacts established by the crossing dendrites of hypoglossal (XII) motoneurons may serve as a morphological option for co-activation, synchronization and proper timing of the bilateral activity of tongue muscles. The crossing dendrites may also provide a feedforward amplification of various signals to the XII motoneurons. The overlapping dendritic territories of the motoneurons innervating protractor and retractor muscles may facilitate the coordinated activities of the agonistic and antagonistic muscles. (2) The musculotopic organization of the XII motoneurons is reflected in the distribution of LOPI for the protractor and retractor muscles of the tongue. (3) Direct sensory inputs from the trigeminal, vestibular, glossopharyngeal-vagal, hypoglossal and spinal afferent fibers to the XII motoneurons may modulate the basic motor pattern and contribute to the plasticity of neuronal circuits. (4) The electrical couplings observed in the vestibulocerebellar neuronal circuits may synchronize and amplify the afferent signals. The combination of chemical and electrical impulse transmission provides a mechanism by which motoneurons can be activated sequentially. © 2014 S. Karger AG, Basel.
    Brain Behavior and Evolution 01/2014; 83(2):104-11.

Related Journals