Xenotransplantation (Xenotransplantation)

Publisher: International Xenotransplantation Association, Wiley

Journal description

Xenotransplantation which is published quarterly will provide its readership with rapid communication of new findings in the field of organ and tissue transplantation across species barriers. Unsolicited contributions of full length and brief communications dealing with both basic and applied studies in this field will be considered for publication pending scientific review to assure high quality. In addition review articles of timely subjects will be solicited by the editors.

Current impact factor: 2.84

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 2.84
2013 Impact Factor 1.779
2012 Impact Factor 2.565
2011 Impact Factor 2.326
2010 Impact Factor 2.067
2009 Impact Factor 2.711
2008 Impact Factor 2.288
2007 Impact Factor 2.588
2006 Impact Factor 1.777
2005 Impact Factor 2.114
2004 Impact Factor 2.876
2003 Impact Factor 2.437
2002 Impact Factor 2.581
2001 Impact Factor 2.079
2000 Impact Factor 3.268
1999 Impact Factor 2.904
1998 Impact Factor 3.671

Impact factor over time

Impact factor

Additional details

5-year impact 2.61
Cited half-life 6.10
Immediacy index 0.79
Eigenfactor 0.00
Article influence 0.53
Website Xenotransplantation website
Other titles Xenotransplantation (Online)
ISSN 1399-3089
OCLC 44974358
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Some journals have separate policies, please check with each journal directly
    • On author's personal website, institutional repositories, arXiv, AgEcon, PhilPapers, PubMed Central, RePEc or Social Science Research Network
    • Author's pre-print may not be updated with Publisher's Version/PDF
    • Author's pre-print must acknowledge acceptance for publication
    • Non-Commercial
    • Publisher's version/PDF cannot be used
    • Publisher source must be acknowledged with citation
    • Must link to publisher version with set statement (see policy)
    • If OnlineOpen is available, BBSRC, EPSRC, MRC, NERC and STFC authors, may self-archive after 12 months
    • If OnlineOpen is available, AHRC and ESRC authors, may self-archive after 24 months
    • Publisher last contacted on 07/08/2014
    • This policy is an exception to the default policies of 'Wiley'
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Nitric oxide (NO) can reduce platelet adhesion and vascular resistance. Tempol can scavenge the reactive oxygen species (ROS) that induce tissue injury. As xenograft rejection attenuates endogenous NO production and generates ROS, we evaluated the potential effect of an NO donor (SIN-1, 3-morpholinosydnonimine) and tempol on hyperacute xenograft dysfunction using an ex vivo porcine lung perfusion model.Methods For the evaluation of von Willebrand factor (vWF) secretion, human endothelial cells were stimulated with thrombin. Porcine lungs were perfused with either fresh human whole blood (unmodified control group [n = 4]), SIN-1 (n = 4), or SIN and tempol (n = 4).ResultsSIN-1 and tempol significantly inhibited vWF secretion from endothelial cells in vitro. However, they did not suppress xenogeneic complement activation. In an ex vivo pulmonary perfusion model, SIN-1 improved pulmonary xenograft function by reducing pulmonary vascular resistance (PVR), inhibiting complement activation, and inhibiting thrombin generation. Combined treatment with tempol and SIN-1 potentiated PVR reduction, but slightly enhanced complement activation.Conclusions An NO donor is expected to improve pulmonary xenograft function through inhibition of vWF secretion, vasoconstriction, thrombin generation, and indirectly through inhibition of complement activation. The additional effects of tempol on an NO donor were not considered significant in an ex vivo xenograft system.
    Xenotransplantation 09/2015; 22(5). DOI:10.1111/xen.12195
  • [Show abstract] [Hide abstract]
    ABSTRACT: The development of the Edmonton Protocol encouraged a great deal of optimism that a cell-based cure for type I diabetes could be achieved. However, donor organ shortages prevent islet transplantation from being a widespread solution as the supply cannot possibly equal the demand. Porcine islet xenotransplantation has the potential to address these shortages, and recent preclinical and clinical trials show promising scientific support. Consequently, it is important to consider whether the current science meets the ethical requirements for moving toward clinical trials. Despite the potential risks and the scientific unknowns that remain to be investigated, there is optimism regarding the xenotransplantation of some types of tissue, and enough evidence has been gathered to ethically justify clinical trials for the most safe and advanced area of research, porcine islet transplantation. Researchers must make a concerted effort to maintain a positive image for xenotransplantation, as a few well-publicized failed trials could irrevocably damage public perception of xenotransplantation. Because all of society carries the burden of risk, it is important that the public be involved in the decision to proceed. As new information from preclinical and clinical trials develops, policy decisions should be frequently updated. If at any point evidence shows that islet xenotransplantation is unsafe, then clinical trials will no longer be justified and they should be halted. However, as of now, the expected benefit of an unlimited supply of islets, combined with adequate informed consent, justifies clinical trials for islet xenotransplantation.
    Xenotransplantation 09/2015; 22(5). DOI:10.1111/xen.12196
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to investigate the humoral immune response to xenogeneic antigens administered during the fetal state utilizing a baboon-to-pig model. Nine fetuses from an alpha-1,3-galactosyltransferase gene knockout (GalT-KO) MGH-miniature swine sow underwent transuterine ultrasound-guided intraportal injection of T-cell depleted baboon bone marrow (B-BM) at mid-gestation. Two juvenile GalT-KO swine undergoing direct B-BM intraportal injection were used as controls. Postnatal humoral tolerance was induced in the long-term surviving piglets as demonstrated by the absence of any antibody response to baboon donor cells. In addition, a second intraportal B-BM administration at 2.5 months post-birth led to no antibody formation despite re-exposure to xenogeneic antigens. This B-cell unresponsiveness was abrogated only when the animal was exposed subcutaneously to third-party xenogeneic and allogeneic antigens, suggesting that the previously achieved humoral non-responsiveness was donor specific. In comparison, the two juvenile GalT-KO control swine demonstrated increasing anti-baboon IgM and IgG levels following intraportal injection. In summary, xenogeneic B-cell tolerance was induced through in utero intraportal exposure to donor cells and this tolerance persisted following postnatal rechallenge with donor B-BM, but was lost on exposure to third-party antigen, possibly as a result of cross-reactive antibody formation. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
    Xenotransplantation 08/2015; 22(5). DOI:10.1111/xen.12186
  • Xenotransplantation 08/2015; 22(5). DOI:10.1111/xen.12187
  • [Show abstract] [Hide abstract]
    ABSTRACT: In pig-to-baboon heart/artery patch transplantation models, adequate costimulation blockade prevents a T-cell response. After heart transplantation, coagulation dysfunction (thrombocytopenia, reduced fibrinogen, increased D-dimer) and inflammation (increased C-reactive protein [CRP]) develop. We evaluated whether coagulation dysfunction and/or inflammation can be detected following pig artery patch transplantation. Baboons received heart (n = 8) or artery patch (n = 16) transplants from genetically engineered pigs and a costimulation blockade-based regimen. Heart grafts functioned for 15-130 days. Artery recipients were euthanized after 28-84 days. Platelet counts, fibrinogen, D-dimer, and CRP were measured. Thrombocytopenia and reduced fibrinogen developed only in recipients of hearts not expressing a coagulation-regulatory protein (n = 4), but not in other heart or patch recipients. However, in heart recipients (n = 8), there were sustained increases in D-dimer (<0.5 to 1.9 ug/ml [P < 0.01]) and CRP (0.26-2.2 mg/dl [P < 0.01]). In recipients of artery patches, there were also sustained increases in D-dimer (<0.5 to 1.4 ug/ml [P < 0.01]) and CRP (0.26 to 1.5 mg/dl [P < 0.001]). An IL-6R antagonist suppressed the increase in CRP, but not D-dimer. The pig artery patch model has proved valuable for determining immunosuppressive regimens that prevent sensitization to pig antigens. This model also provides information on the sustained systemic inflammation in xenograft recipients (SIXR). An IL-6R antagonist may help suppress this response. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
    Xenotransplantation 08/2015; 22(5). DOI:10.1111/xen.12182
  • [Show abstract] [Hide abstract]
    ABSTRACT: Porcine microorganisms may be transmitted to the human recipient when xenotransplantation with pig cells, tissues, and organs will be performed. Most of such microorganisms can be eliminated from the donor pig by specified or designated pathogen-free production of the animals. As human cytomegalovirus causes severe transplant rejection in allotransplantation, considerable concern is warranted on the potential pathogenicity of porcine cytomegalovirus (PCMV) in the setting of xenotransplantation. On the other hand, despite having a similar name, PCMV is different from HCMV. The impact of PCMV infection on pigs is known; however, the influence of PCMV on the human transplant recipient is unclear. However, first transplantations of pig organs infected with PCMV into non-human primates were associated with a significant reduction of the survival time of the transplants. Sensitive detection methods and strategies for elimination of PCMV from donor herds are required.
    Xenotransplantation 08/2015; 22(5). DOI:10.1111/xen.12180
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background During the process of islet isolation, pancreatic enzymes are activated and released, adversely affecting islet survival and function. We hypothesize that the exocrine component of pancreases harvested from pre-weaned juvenile pigs is immature and hence pancreatic tissue from these donors is protected from injury during isolation and prolonged tissue culture.Methods Biopsy specimens taken from pancreases harvested from neonatal (5–10 days), pre-weaned juvenile (18–22 days), weaned juvenile (45–60 days), and young adult pigs (>90 days) were fixed and stained with hematoxylin and eosin. Sections were examined under a fluorescent microscope to evaluate exocrine zymogen fluorescence intensity (ZFI) and under an electron microscope to evaluate exocrine zymogen granule density (ZGD).ResultsExocrine content estimation showed significantly lower ZFI and ZGD in juvenile pig pancreases (1.5 ± 0.04 U/μm2, ZFI; 1.03 ± 0.07 × 103/100 μm2, ZGD) compared to young adult pigs (2.4 ± 0.05U/μm2, ZFI; 1.53 ± 0.08 × 103/100 μm2 ZGD). Islets in juvenile pig pancreases were on average smaller (105.2 ± 11.2 μm) than islets in young adult pigs (192 ± 7.7 μm), but their insulin content was comparable (80.9 ± 2.2% juvenile; 84.2 ± 0.3% young adult, P > 0.05). All data expressed as mean ± SEM.Conclusion Porcine islet xenotransplantation continues to make strides toward utilization in clinical trials of type 1 diabetes. Porcine donor age and weaning status influence the extent of exocrine maturation of the pancreas. Juvenile porcine pancreases may represent an alternative donor source for islet xenotransplantation as their exocrine component is relatively immature; this preserves islet viability during extended tissue culture following isolation.
    Xenotransplantation 08/2015; 22(5). DOI:10.1111/xen.12184
  • Xenotransplantation 07/2015; 22(4). DOI:10.1111/xen.12181
  • [Show abstract] [Hide abstract]
    ABSTRACT: With the introduction of the α1, 3-galactosyltransferase gene-knockout (GT-KO) pig and its pivotal role in preventing hyperacute rejection (HAR), coagulation remains a considerable obstacle yet to be overcome in order to provide long-term xenograft survival. Thrombomodulin (TBM) plays a critical anticoagulant and anti-inflammatory role in its part of the protein C pathway. Many studies have demonstrated the strong anticoagulant effects of TBM in xenotransplantation, but its complement regulatory effects have not been appropriately examined. Here, we investigate whether TBM can regulate complement activation as well as coagulation in response to xenogeneic stimuli. We transfected porcine endothelial cells (MPN-3) with adenovirus vectors containing the human TBM gene (ad-hTBM), or a control gene containing GFP (ad-GFP). The expression level of ad-hTBM was measured by flow cytometry. To confirm the anticoagulant effect of TBM, coagulation time was measured after treatment with recalcified human plasma in ad-hTBM-transfected MPN-3, and a thrombin activity assay was performed after treatment with 50% human serum in ad-hTBM-infected MPN-3. Thrombin generation was significantly decreased in a dose-dependent manner in ad-TBM group, and coagulation time was increased in the ad-hTBM group when compared to the ad-GFP group. Complement-dependent serum toxicity assays were performed after treatment with 20% human serum or heat-inactivated human serum by LDH assay. Complement-dependent toxicity was significantly attenuated in the ad-hTBM group, but complement-independent toxicity was not attenuated in the ad-hTBM group. These results suggest that human thrombomodulin (hTBM) has complement regulatory effects as well as anticoagulant effects. To further investigate the mechanisms of complement regulation by hTBM, we deleted the EGF5, 6 domains that are involved in thrombin generation or the lectin-like domain involved in inflammation of TBM and functional tests were performed using these modified forms. We showed that the EGF5, 6 domain of TBM principally inhibits complement activation rather than the lectin domain. The EGF5, 6 domains of TBM appear to be the major domains for down-regulating the complement system rather than the lectin-like domain during xenogenic stimuli. The role of EGF5, 6 domains of hTBM may be due to inhibition of thrombin as thrombin can cleave C3a and C5a directly and hTBM may also be involved in complement regulation. Clearly then human TBM has complement regulatory effects as well as anticoagulant effects in xeno-immune response, and it is a promising target for attenuating xenograft rejection. © 2015 The Authors Xenotransplantation Published by John Wiley & Sons Ltd.
    Xenotransplantation 07/2015; 22(4). DOI:10.1111/xen.12173
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pig islet grafts have been successful in treating diabetes in animal models. One remaining question is whether neonatal pig isletlike cell clusters (NICC) are resistant to the early loss of islets from the instant blood-mediated inflammatory reaction (IBMIR). Neonatal isletlike cell clusters were harvested from three groups of piglets-(i) wild-type (genetically unmodified), (ii) α1,3-galactosyltransferase gene-knockout (GTKO)/CD46, and (iii) GTKO/CD46/CD39. NICC samples were mixed with human blood in vitro, and the following measurements were made-antibody binding; complement activation; speed of islet-induced coagulation; C-peptide; glutamic acid decarboxylase (GAD65) release; viability. Time to coagulation and viability were both reduced in all groups compared to freshly drawn non-anticoagulated human blood and autologous combinations, respectively. Antibody binding to the NICC occurred in all groups. Neonatal isletlike cell clusters were subject to humoral injury with no difference associated to their genetic characteristics. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
    Xenotransplantation 07/2015; 22(4). DOI:10.1111/xen.12178
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endothelial cell activation and injury by the terminal pathway of complement is important in various pathobiological processes, including xenograft rejection. Protection against injury by human complement can be induced in porcine endothelial cells (ECs) with IL-4 and IL-13 through metabolic activation. However, despite this resistance, the complement-treated ECs were found to lose membrane permeability control assessed with the small molecule calcein. Therefore, to define the apparent discrepancy of permeability changes vis-à-vis the protection from killing, we now investigated whether IL-4 and IL-13 influence the release of the large cytoplasmic protein lactate dehydrogenase (LDH) in ECs incubated with complement or the pore-forming protein melittin. Primary cultures of ECs were pre-treated with IL-4 or IL-13 and then incubated with human serum as source of antibody and complement or melittin. Cell death was assessed using neutral red. Membrane permeability was quantitated measuring LDH release. We found that IL-4-/IL-13-induced protection of ECs from killing by complement or melittin despite loss of LDH in amounts similar to control ECs. However, the cytokine-treated ECs that were protected from killing rapidly regained effective control of membrane permeability. Moreover, the viability of the protected ECs was maintained for at least 2 days. We conclude that the protection induced by IL-4/IL-13 in ECs against lethal attack by complement or melittin is effective and durable despite severe initial impairment of membrane permeability. The metabolic changes responsible for protection allow the cells to repair the membrane injury caused by complement or melittin. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
    Xenotransplantation 06/2015; 22(4). DOI:10.1111/xen.12172
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hepatocyte transplantation (Tx) is a potential therapy for certain diseases of the liver, including hepatic failure. However, there is a limited supply of human livers as a source of cells and, after isolation, human hepatocytes can be difficult to expand in culture, limiting the number available for Tx. Hepatocytes from other species, for example, the pig, have therefore emerged as a potential alternative source. We searched the literature through the end of 2014 to assess the current status of experimental research into hepatocyte xenoTx. The literature search identified 51 reports of in vivo cross-species Tx of hepatocytes in a variety of experimental models. Most studies investigated the Tx of human (n = 23) or pig (n = 19) hepatocytes. No studies explored hepatocytes from genetically engineered pigs. The spleen was the most common site of Tx (n = 23), followed by the liver (through the portal vein [n = 6]) and peritoneal cavity (n = 19). In 47 studies (92%), there was evidence of hepatocyte engraftment and function across a species barrier. The data provided by this literature search strengthen the hypothesis that xenoTx of hepatocytes is feasible and potentially successful as a clinical therapy for certain liver diseases, including hepatic failure. By excluding vascular structures, hepatocytes isolated from genetically engineered pig livers may address some of the immunological problems of xenoTx. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
    Xenotransplantation 05/2015; 22(4). DOI:10.1111/xen.12170