Xenotransplantation (Xenotransplantation )

Publisher: International Xenotransplantation Association, Blackwell Publishing


Xenotransplantation which is published quarterly will provide its readership with rapid communication of new findings in the field of organ and tissue transplantation across species barriers. Unsolicited contributions of full length and brief communications dealing with both basic and applied studies in this field will be considered for publication pending scientific review to assure high quality. In addition review articles of timely subjects will be solicited by the editors.

Impact factor 1.78

  • Hide impact factor history
    Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    Xenotransplantation website
  • Other titles
    Xenotransplantation (Online)
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Blackwell Publishing

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • Some journals impose embargoes typically of 6 or 12 months, occasionally of 24 months
    • no listing of affected journals available as yet
  • Conditions
    • See Wiley-Blackwell entry for articles after February 2007
    • Publisher's version/PDF cannot be used
    • On author's server, institutional server or subject-based server
    • Server must be non-commercial
    • Publisher copyright and source must be acknowledged with set statement ("The definitive version is available at www.blackwell-synergy.com")
    • Articles in some journals can be made Open Access on payment of additional charge
    • 'Blackwell Publishing' is an imprint of 'Wiley'
  • Classification
    ​ yellow

Publications in this journal

  • Xenotransplantation 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Xenotransplantation of porcine islets can reverse diabetes in non-human primates. The remaining hurdles for clinical application include safe and effective T-cell-directed immunosuppression, but protection against the innate immune system and coagulation dysfunction may be more difficult to achieve. Islet-targeted genetic manipulation of islet-source pigs represents a powerful tool to protect against graft loss. However, whether these genetic alterations would impair islet function is unknown.Methods On a background of α1,3-galactosyltransferase gene-knockout (GTKO)/human (h)CD46, additional genes (hCD39, human tissue factor pathway inhibitor, porcine CTLA4-Ig) were inserted in different combinations under an insulin promoter to promote expression in islets (confirmed by immunofluorescence). Seven pigs were tested for baseline and glucose/arginine-challenged levels of glucose, insulin, C-peptide, and glucagon.ResultsThis preliminary study did not show definite evidence of β-cell deficiencies, even when three transgenes were expressed under the insulin promoter. Of seven animals, all were normoglycemic at fasting, and five of seven had normal glucose disposal rates after challenge. All animals exhibited insulin, C-peptide, and glucagon responses to both glucose and arginine challenge; however, significant interindividual variation was observed.Conclusions Multiple islet-targeted transgenic expression was not associated with an overtly detrimental effect on islet function, suggesting that complex genetic constructs designed for islet protection warrants further testing in islet xenotransplantation models.
    Xenotransplantation 11/2014;
  • Xenotransplantation 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human beings do not synthesize the glycolyl form of the sialic acid (Neu5Gc) and only express the acetylated form of the sugar, whereas a diet-based intake of Neu5Gc provokes a natural immunization and production of anti-Neu5Gc antibodies in human serum. However, Neu5Gc is expressed on mammal glycoproteins and glycolipids in most organs and cells. We review here the relevance of Neu5Gc and anti-Neu5Gc antibodies in the context of xenotransplantation and the use of animal-derived molecules and products, as well as the possible consequences of a long-term exposure to anti-Neu5Gc antibodies in recipients of xenografts. In addition, the importance of an accurate estimation of the anti-Neu5Gc response following xenotransplantation and the future contribution of knockout animals mimicking the human situation are also assessed.
    Xenotransplantation 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Whole-organ engineering provides a new alternative source of donor organs for xenotransplantation. Utilization of decellularized whole-organ scaffolds, which can be created by detergent perfusion, is a strategy for tissue engineering. In this article, our aim is to scale up the decellularization process to human-sized liver and kidney to generate a decellularized matrix with optimal and stable characteristics on a clinically relevant scale.Methods Whole porcine liver and kidney were decellularized by perfusion using different detergents (1% SDS, 1% Triton X-100, 1% peracetic acid (PAA), and 1% NaDOC) via the portal vein and renal artery of the liver and kidney, respectively. After rinsing with PBS to remove the detergents, the obtained liver and kidney extracellular matrix (ECM) were processed for histology, residual cellular content analysis, and ECM components evaluation to investigate decellularization efficiency, xenoantigens removal, and ECM preservation.ResultsThe resulting liver and kidney scaffolds in the SDS-treated group showed the most efficient clearance of cellular components and xenoantigens, including DNA and protein, and preservation of the extracellular matrix composition. In comparison, cell debris was observed in the other decellularized groups that were generated using Triton X-100, PAA, and NaDOC. Special staining and immunochemistry of the porcine liver and kidney ECMs further confirmed the disrupted three-dimension ultrastructure of the ECM in the Triton X-100 and NaDOC groups. Additionally, Triton X-100 effectively eliminated the residual SDS in the SDS-treated group, which ensured the scaffolds were not cytotoxic to cells. Thus, we have developed an optimal method that can be scaled up for use with other solid whole organs.Conclusions Our SDS-perfusion protocol can be used for porcine liver and kidney decellularization to obtain organ scaffolds cleared of cellular material, xenoimmunogens, and preserved vital ECM components.
    Xenotransplantation 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Pre-clinical demonstration of porcine islet graft function is necessary to support the clinical transplantation of pig islets. C-peptide concentration is an especially useful marker of insulin secretion, because its measurement is not confounded by the presence of exogenous insulin. To measure porcine C-peptide (PCP), researchers in the field exclusively used the Millipore (previously Linco Research) radioimmunoassay (RIA) until 2011, when Mercodia released an alternative enzyme-linked immunosorbent assay (ELISA). (At the end of 2013, the Millipore RIA was withdrawn from the market for commercial reasons.) In our current study, to directly compare these two assays, we performed validation studies on each. We also performed interlaboratory comparisons. Then, to determine the level of agreement between the assays, we analyzed the porcine serum C-peptide concentration measurement results obtained from each assay.Methods Using pre-established method validation acceptance criteria, we determined and evaluated the detection limit, sensitivity, precision, linearity, and recovery of the two commercially available PCP assays described above (ELISA and RIA). After validation requirements were met, we performed a method comparison by determining C-peptide concentration in 60 serum samples collected from 31 normal, healthy adult Landrace pigs in the fasting state; a subset underwent an intravenous glucose challenge test, to stimulate the typical physiologic range of C-peptide. All analyses were performed according to manufacturer instructions. To compare the assays, we used Deming regression analysis.ResultsBoth assays met acceptance criteria. The RIA had a sensitivity of 0.1 ng/ml; it was linear to 2.9 ng/ml. The ELISA had a detection limit of 0.03 ng/ml; it was linear to 1.2 ng/ml. Recovery ranged from 89 to 113% with both assays. The coefficient of variability was 8% in interlaboratory comparisons. Deming regression analysis directly comparing both assays revealed significant correlation between them (before log-transformation: R2 = 0.9803, P < 0.0001; after log-transformation: R2 = 0.9727, P < 0.0001). Measured C-peptide concentration was lower with the ELISA than with the RIA; individual measurements plotted against the averages of the pair demonstrated that the variability from the mean strongly depended on increasing concentration. To transform ELISA data, we used the standard regression equation y = 2.191x + 0.1119 and the log-transformed regression equation y = 0.8101x + 0.7502. Both the transformed and the log-transformed (exponential) values approximated the measured RIA levels with a high degree of accuracy in the concentration range of 0 to 1.0 ng/ml.Conclusions Porcine C-peptide concentration can be reliably measured in porcine serum samples with either assay (ELISA or RIA). However, the C-peptide results generated by these two assays are not equivalent. Therefore, assay bias must be considered before directly comparing pre-clinical studies that used either of these assays. We determined that harmonization between the assays is appropriate in a specific concentration range. Outside of that range, we do not know whether a linear correction function can be more broadly applied. The variation between the two assays may be related to calibration or reagent factors. To determine which assay is truly more accurate and to effectively compare interlaboratory results, we will need a traceable reference standard.
    Xenotransplantation 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Manipulating the pig genome to increase compatibility with human biology may facilitate the clinical application of xenotransplantation. Genetic modifications to pig cells have been made by sequential recombination in fetal fibroblasts and liver-derived cells followed by cross-breeding or somatic cell nuclear transfer. The generation of pigs for research or organ donation by these methods is slow, expensive and requires technical expertise. A novel system incorporating the bacterial nuclease Cas9 and single-guide RNA targeting a 20 nucleotide site within a gene can be expressed from a single plasmid leading to a double-strand break and gene disruption. Coexpression of multiple unique single-guide RNA can modify several genetic loci in a single step. We describe a process for increasing the efficiency of selecting cells with multiple genetic modifications.Methods We used the CRISPR/Cas system to target the GGTA1, CMAH and putative iGb3S genes in pigs that have been naturally deleted in humans. Cells lacking galactose α-1,3 galactose (α-Gal) were negatively selected by an IB4 lectin/magnetic bead. α-Gal negative multiplexed single-guide RNA-treated cells were used for somatic cell nuclear transfer (SCNT) and transferred to fertile sows. We examined the levels of α-Gal and Neu5Gc expression of 32 day fetuses and piglets and analyzed the targeted genes by DNA sequencing.ResultsLiver-derived cells treated with multiple single-guide RNA and selected for an α-Gal null phenotype were significantly more likely to also carry mutations in simultaneously targeted genes. Multiplex single-guide RNA-treated cells used directly for SCNT without further genetic selection produced piglets with deletions in the targeted genes but also created double- and triple-gene KO variations. CRISPR/Cas-treated cells grew normally and yielded normal liters of healthy piglets via somatic cell nuclear transfer.Conclusions The CRISPR/Cas system allows targeting of multiple genes in a single reaction with the potential to create pigs of one genetic strain or multiple genetic modifications in a single pregnancy. The application of this phenotypic selection strategy with multiplexed sgRNA and the Cas9 nuclease has accelerated our ability to produce and evaluate pigs important to xenotransplantation.
    Xenotransplantation 09/2014;
  • Xenotransplantation 09/2014; 21(5).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Xenograft rejection of pigs organs with an engineered mutation in the GGTA-1 gene (GTKO) remains a predominantly antibody mediated process which is directed to a variety of non-Gal protein and carbohydrate antigens. We previously used an expression library screening strategy to identify six porcine endothelial cell cDNAs which encode pig antigens that bind to IgG induced after pig-to-primate cardiac xenotransplantation. One of these gene products was a glycosyltransferase with homology to the bovine β1,4 N-acetylgalactosaminyltransferase (B4GALNT2). We now characterize the porcine B4GALNT2 gene sequence, genomic organization, expression, and functional significance.Methods The porcine B4GALNT2 cDNA was recovered from the original library isolate, subcloned, sequenced, and used to identify a bacterial artificial chromosome (BAC) containing the entire B4GALNT2 locus from the Children's Hospital Oakland Research Institute BACPAC Resource Centre (#AC173453). PCR primers were designed to map the intron/exon genomic organization in the BAC clone. A stable human embryonic kidney (HEK) cell line expressing porcine B4GALNT2 (HEK-B4T) was produced. Expression of porcine B4GALNT2 in HEK-B4T cells was characterized by immune staining and siRNA transfection. The effects of B4GALNT2 expression in HEK-B4T cells was measured by flow cytometry and complement mediated lysis. Antibody binding to HEK and HEK-B4T cells was used to detect an induced antibody response to the B4GALNT2 produced glycan and the results were compared to GTKO PAEC specific non-Gal antibody induction. Expression of porcine B4GALNT2 in pig cells and tissues was measured by qualitative and quantitative real time reverse transcriptase PCR and by Dolichos biflorus agglutinin (DBA) tissue staining.ResultsThe porcine B4GALNT2 gene shares a conserved genomic organization and encodes an open reading frame with 76 and 70% amino acid identity to the human and murine B4GALNT2 genes, respectively. The B4GALNT2 gene is expressed in porcine endothelial cells and shows a broadly distributed expression pattern. Expression of porcine B4GALNT2 in human HEK cells (HEK-B4T) results in increased binding of antibody to the B4GALNT2 enzyme, and increased reactivity with anti-Sda and DBA. HEK-B4T cells show increased sensitivity to complement mediated lysis when challenged with serum from primates after pig to primate cardiac xenotransplantation. In GTKO and GTKO:CD55 cardiac xenotransplantation recipients there is a significant correlation between the induction of a non-Gal antibody, measured using GTKO PAECs, and the induction of antibodies which preferentially bind to HEK-B4T cells.Conclusion The functional isolation of the porcine B4GALNT2 gene from a PAEC expression library, the pattern of B4GALNT2 gene expression and its sensitization of HEK-B4T cells to antibody binding and complement mediated lysis indicates that the enzymatic activity of porcine B4GALNT2 produces a new immunogenic non-Gal glycan which contributes in part to the non-Gal immune response detected after pig-to-baboon cardiac xenotransplantation.
    Xenotransplantation 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Scientists working in the field of xenotransplantation do not employ a uniform method to measure and report natural and induced antibody responses to non-Galα(1,3)Gal (non-Gal) epitopes. Such humoral responses are thought to be particularly pathogenic after transplantation of vascularized GalTKO pig organs and having a more uniform assay and reporting format would greatly facilitate comparisons between laboratories.Methods Flow cytometry allows examination of antibody reactivity to intact antigens in their natural location and conformation on cell membranes. We have established a simple and reproducible flow cytometric assay to detect antibodies specific for non-Gal pig antigens using primary porcine aortic endothelial cells (pAECs) and cell culture-adapted pAEC cell lines generated from wild type and α1,3galactosyl transferase knockout (GalTKO) swine.ResultsThe consensus protocol we propose here is based on procedures routinely used in four xenotransplantation centers and was independently evaluated at three sites using shared cells and serum samples. Our observation support use of the cell culture-adapted GalTKO pAEC KO:15502 cells as a routine method to determine the reactivity of anti-non-Gal antibodies in human and baboon serum.Conclusions We have developed an assay that allows the detection of natural and induced non-Gal xenoreactive antibodies present in human or baboon serum in a reliable and consistent manner. This consensus assay and format for reporting the data should be accessible to laboratories and will be useful for assessing experimental results between multiple research centers. Adopting this assay and format for reporting the data should facilitate the detection, monitoring, and detailed characterization of non-Gal antibody responses.
    Xenotransplantation 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Patients with liver failure could potentially be bridged with porcine xenogeneic liver cell transplantation. We examined species-specific differences between primary human and porcine hepatocytes in the regulation of coagulation protein expression and function.Methods Isolated primary human and porcine hepatocytes were stimulated with either porcine or human interleukin (IL)-6 (10 ng/ml), IL-1β (10 ng/ml), and tumor necrosis factor-alpha (TNF-α, 30 ng/ml). mRNA expression of coagulation factors were measured by RT-PCR and real-time PCR. Cell culture supernatants were used for the measurement of fibrinogen by ELISA and determination of fibrin clot generation.ResultsFibrinogen expression in human hepatocytes increased after IL-6 treatment (P = 0.010) and decreased after TNF-α treatment (P = 0.005). Porcine hepatocytes displayed a lower increase in fibrinogen expression after IL-6 treatment as compared to hepatocytes of human origin (P = 0.021). Porcine hepatocytes responded contrarily following TNF-α treatment with an increased expression of fibrinogen resulting in a significant species-specific difference between human and porcine hepatocytes (P = 0.029). Fibrin polymer generation by human hepatocytes was stable and widely branched after IL-6 treatment, while stimulation with TNF-α displayed no fibrin generation at all. In contrast, treatment of porcine hepatocytes with TNF-α resulted in generation of a stable and widely branched fibrin polymer, and stimulation with IL-6 only leads to generation of partial fibrin aggregates.Conclusion We identified species-specific differences in the regulation of fibrinogen mRNA expression and fibrin generation under inflammatory stimuli. In hepatic xenotransplantation of porcine origin, these interspecies differences might lead to a loss of physiological coagulation function and a loss of transplanted cells.
    Xenotransplantation 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Pig to baboon liver xenotransplantation typically results in severe thrombocytopenia and coagulation disturbances, culminating in death from hemorrhage within 9 days, in spite of continuous transfusions. We studied the contribution of anticoagulant production and clotting pathway deficiencies to fatal bleeding in baboon recipients of porcine livers.Methods By transplanting liver xenografts from α1,3-galactosyltransferase gene-knockout (GalT-KO) miniature swine donors into baboons as auxiliary organs, leaving the native liver in place, we provided the full spectrum of primate clotting factors and allowed in vivo mixing of porcine and primate coagulation systems.ResultsRecipients of auxiliary liver xenografts develop severe thrombocytopenia, comparable to recipients of conventional orthotopic liver xenografts and consistent with hepatic xenograft sequestration. However, baboons with both pig and native livers do not exhibit clinical signs of bleeding and maintain stable blood counts without transfusion for up to 8 consecutive days post-transplantation. Instead, recipients of auxiliary liver xenografts undergo graft failure or die of sepsis, associated with thrombotic microangiopathy in the xenograft, but not the native liver.Conclusion Our data indicate that massive hemorrhage in the setting of liver xenotransplantation might be avoided by supplementation with primate clotting components. However, coagulation competent hepatic xenograft recipients may be predisposed to graft loss related to small vessel thrombosis and ischemic necrosis.
    Xenotransplantation 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background The need for pig islet xenotransplantation in patients with type 1 diabetes is compelling; however, the ideal age at which islets should be isolated from the donor pig remains uncertain. Pig islet transplantation in primates, as a valuable pre-clinical model, has been explored using adult, neonatal, fetal pig islets, and also pancreatic primordia from pig embryos as beta cell donors. Neonatal pig islets have some advantages over adult and fetal islets, but the optimal age within the first month of life at which neonatal islets should be isolated and transplanted is as yet unclear.Methods In an attempt to answer this question, we carried out a literature search, but limited the search primarily to evidence in the clinically-relevant pig-to-non-human primate model.ResultsWe identified surprisingly few studies in this model directed to this topic. Even in pig-to-rodent models, there were few definitive data.Conclusion From the few data available to us, we conclude that pancreatectomy and islet isolation from neonatal pigs may have advantages over adult pigs and that isolation during the first week of life may have minor advantages over later weeks.
    Xenotransplantation 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Little information is available regarding the precise swine leukocyte antigen (SLA)-derived immunogenic peptides that are presented in the context of human HLA molecules. Here, we identified SLA-derived immunogenic peptides that are presented in association with human HLA-A2 molecule.
    Xenotransplantation 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Pig erythrocytes are potentially useful to solve the worldwide shortage of human blood for transfusion. Domestic pig erythrocytes, however, express antigens that are bound by human preformed antibodies. Advances in genetic engineering have made it possible to rapidly knock out the genes of multiple xenoantigens, namely galactose α1,3 galactose (aGal) and N-glycolylneuraminic acid (Neu5Gc). We have recently targeted the GGTA1 and CMAH genes with zinc finger endonucleases resulting in double knockout pigs that no longer express aGal or Neu5Gc and attract significantly fewer human antibodies. In this study, we characterized erythrocytes from domestic and genetically modified pigs, baboons, chimpanzees, and humans for binding of human and baboon natural antibody, and complement-mediated lysis.
    Xenotransplantation 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Porcine islet xenotransplantation is emerging as a potential alternative for allogeneic clinical islet transplantation. Optimization of porcine islet isolation in terms of yield and quality is critical for the success and cost-effectiveness of this approach. Incomplete pancreas distention and inhomogeneous enzyme distribution have been identified as key factors for limiting viable islet yield per porcine pancreas. The aim of this study was to explore the utility of magnetic resonance imaging (MRI) as a tool to investigate the homogeneity of enzyme delivery in porcine pancreata. Traditional and novel methods for enzyme delivery aimed at optimizing enzyme distribution were examined. Pancreata were procured from Landrace pigs via en bloc viscerectomy. The main pancreatic duct was then cannulated with an 18-g winged catheter and MRI performed at 1.5-T. Images were collected before and after ductal infusion of chilled MRI contrast agent (gadolinium) in physiological saline. Regions of the distal aspect of the splenic lobe and portions of the connecting lobe and bridge exhibited reduced delivery of solution when traditional methods of distention were utilized. Use of alternative methods of delivery (such as selective re-cannulation and distention of identified problem regions) resolved these issues, and MRI was successfully utilized as a guide and assessment tool for improved delivery. Current methods of porcine pancreas distention do not consistently deliver enzyme uniformly or adequately to all regions of the pancreas. Novel methods of enzyme delivery should be investigated and implemented for improved enzyme distribution. MRI serves as a valuable tool to visualize and evaluate the efficacy of current and prospective methods of pancreas distention and enzyme delivery.
    Xenotransplantation 07/2014;
  • Xenotransplantation 07/2014;