Journal of Industrial Microbiology and Biotechnology (J IND MICROBIOL BIOT )

Publisher: Springer Verlag

Description

The Journal of Industrial Microbiology and Biotechnology covers all aspects of the industrial applications of biotechnology, fermentation, environmental microbiology, biodegradation, biodeterioration, molecular taxonomy, treatment of waste streams, effects of micro-organisms on the environment, and of the environment on micro-organisms, microbial diversity and certain aspects of quality control and other aspects of applied microbiology of interest to scientists in industry, government and academe.

  • Impact factor
    2.32
    Show impact factor history
     
    Impact factor
  • 5-year impact
    2.73
  • Cited half-life
    7.20
  • Immediacy index
    0.28
  • Eigenfactor
    0.01
  • Article influence
    0.70
  • Website
    Journal of Industrial Microbiology and Biotechnology website
  • Other titles
    Journal of industrial microbiology & biotechnology (Online), Journal of industrial microbiology and biotechnology
  • ISSN
    1367-5435
  • OCLC
    39928819
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors own final version only can be archived
    • Publisher's version/PDF cannot be used
    • On author's website or institutional repository
    • On funders designated website/repository after 12 months at the funders request or as a result of legal obligation
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (The original publication is available at www.springerlink.com)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [show abstract] [hide abstract]
    ABSTRACT: Thin stillage (TS) is a waste residue that remains after bioethanol production, and its disposal reflects the high costs of bioethanol production. Thus, the development of cost-effective ways to process TS is a pending issue in bioethanol plants. The aim of this study was to evaluate the utilization of TS for the production of the valuable chemical, 1,3-propanediol (1,3-PDO), by Lactobacillus panis PM1. Different fermentation parameters, including temperature, pH and strains [wild-type and a recombinant strain expressing a NADPH-dependent aldehyde reductase (YqhD) gene] were tested in batch and fed-batch cultivations. The highest 1,3-PDO concentration (12.85 g/L) and yield (0.84 g/g) were achieved by batch fermentation at pH-4.5/30 °C by the YqhD recombinant strain. Furthermore, pH-controlled batch fermentation reduced the total fermentation period, resulting in the maximal 1,3-PDO concentration of 16.23 g/L and yield of 0.72 g/g in TS without an expensive nutrient or nitrogen (e.g., yeast extract, beef extract, and peptone) supplementation. The addition of two trace elements, Mg(2+) and Mn(2+), in TS increased 1,3-PDO yield (0.74 g/g) without 3-hydroxypropionaldehyde production, the only intermediate of 1,3-PDO biosynthetic pathway in L. panis PM1. Our results suggest that L. panis PM1 can offer a cost-effective process that utilizes the TS to produce a value-added chemical, 1,3-PDO.
    Journal of Industrial Microbiology and Biotechnology 02/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: The global availability of a therapeutically effective influenza virus vaccine during a pandemic remains a major challenge for the biopharmaceutical industry. Long production time, coupled with decreased supply of embryonated chicken eggs (ECE), significantly affects the conventional vaccine production. Transformed cell lines have attained regulatory approvals for vaccine production. Based on the fact that the avian influenza virus would infect the cells derived from its natural host, the viral growth characteristics were studied on chicken embryo-derived primary cell cultures. The viral propagation was determined on avian origin primary cell cultures, transformed mammalian cell lines, and in ECE. A comparison was made between these systems by utilizing various cell culture-based assays. In-vitro substrate susceptibility and viral infection characteristics were evaluated by performing hemagglutination assay (HA), 50 % tissue culture infectious dose (TCID50) and monitoring of cytopathic effects (CPE) caused by the virus. The primary cell culture developed from chicken embryos showed stable growth characteristics with no contamination. HA, TCID50, and CPE exhibited that these cell systems were permissive to viral infection, yielding 2–10 times higher viral titer as compared to mammalian cell lines. Though the viral output from the ECE was equivalent to the chicken cell culture, the time period for achieving it was decreased to half. Some of the prerequisites of inactivated influenza virus vaccine production include generation of higher vial titer, independence from exogenous sources, and decrease in the production time lines. Based on the tests, it can be concluded that chicken embryo primary cell culture addresses these issues and can serve as a potential alternative for influenza virus vaccine production.
    Journal of Industrial Microbiology and Biotechnology 03/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: Abstract A ctinomycetes produce many pharmaceutically useful compounds through type I polyketide biosynthetic pathways. Soil has traditionally been an important source for these actinomycete-derived pharmaceuticals. As the rate of antibiotic discovery has decreased and the incidence of antibiotic resistance has increased, researchers have looked for alternatives to soil for bioprospecting. Street sediment, where actinomycetes make up a larger fraction of the bacterial population than in soil, is one such alternative environment. To determine if these differences in actinomycetal community structure are reflected in type I polyketide synthases (PKSI) distribution, environmental DNA from soils and street sediments was characterized by sequencing amplicons of PKSI-specific PCR primers. Amplicons covered two domains: the last 80 amino acids of the ketosynthase (KS) domain and the first 240 amino acids of the acyltransferase (AT ) domain. One hundred and ninety clones from ten contrasting soils from six regions and nine street sediments from six cities were sequenced. Twentyfive clones from two earthworm-affected samples were also sequenced. UniFrac lineage-specific analysis identified two clades that clustered with actinomycetal GenBank matches that were street sediment-specific, one similar to the PKSI segment of the mycobactin siderophore involved in mycobacterial virulence. A clade of soil-specific sequences clustered with GenBank matches from the ambruticin and jerangolid pathways of Sorangium cellulosum. All three of these clades were found in sites >700 km apart. Street sediments are enriched in actinomycetal PKSIs. Non-actinomycetal PKSI pathways may be more chemically diverse than actinomycetal PKSIs. Common soil and street sediment PKIs are globally distributed.
    Journal of Industrial Microbiology and Biotechnology 01/2013;
  • [show abstract] [hide abstract]
    ABSTRACT: β-Poly(malic acid) (PMLA) has attracted industrial interest because this polyester can be used as a prodrug or for drug delivery systems. In PMLA production by Aureobasidium pullulans ipe-1, it was found that PLMA production was associated with cell growth in the early exponential growth phase and dissociated from cell growth in the late exponential growth phase. To enhance PMLA production in the late phase, different fermentation modes and strategies for controlling culture redox potential (CRP) were studied. The results showed that high concentrations of produced PMLA (above 40 g/l) not only inhibited PMLA production, but also was detrimental to cell growth. Moreover, when CRP increased from 57 to 100 mV in the late exponential growth phase, the lack of reducing power in the broth also decreased PMLA productivity. PMLA productivity could be enhanced by repeated-batch culture to maintain cell growth in the exponential growth phase, or by cell-recycle culture with membrane to remove the produced PMLA, or by maintaining CRP below 70 mV no matter which kind of fermentation mode was adopted. Repeated-batch culture afforded a high PMLA concentration (up to 63.2 g/l) with a productivity of 1.15 g l(-1) h(-1). Cell-recycle culture also confirmed that PMLA production by the strain ipe-1 was associated with cell growth.
    Journal of Industrial Microbiology and Biotechnology 03/2012; 39(7):1073-80.
  • Journal of Industrial Microbiology and Biotechnology 01/2011; 38(12):111-117.
  • Source
    Journal of Industrial Microbiology and Biotechnology 01/2010; 37(7):639-639.
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Lactoferricin is a 25-amino acid antimicrobial peptide fragment that is liberated by pepsin digestion of lactoferrin present in bovine milk. Along with its antibacterial properties, lactoferricin has also been reported to have immunostimulatory, antiviral, and anticarcinogenic effects. These attributes provide lactoferricin and other natural bioactive peptides with the potential to be functional food ingredients that can be used by the food industry in a variety of applications. At present, commercial uses of these types of compounds are limited by the scarcity of information on their ability to survive food processing environments. We have monitored the degradation of lactoferricin during its incubation with two types of lactic acid bacteria used in the yogurt-making industry, Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus, with the aim of assessing the stability of this milk protein-derived peptide under simulated yogurt-making conditions. Analysis of the hydrolysis products isolated from these experiments indicates degradation of this peptide near neutral pH by lactic acid bacteria-associated peptidases, the extent of which was influenced by the bacterial strain used. However, the data also showed that compared to other milk-derived bioactive peptides that undergo complete degradation under these conditions, the 25-amino acid lactoferricin is apparently more resistant, with approximately 50% of the starting material remaining after 4 h of incubation. These findings imply that lactoferricin, as a natural milk protein-derived peptide, has potential applications in the commercial production of yogurt-like fermented dairy products as a multi-functional food ingredient.
    Journal of Industrial Microbiology and Biotechnology 01/2010;

Related Journals