Journal of Industrial Microbiology and Biotechnology Impact Factor & Information

Publisher: Springer Verlag

Journal description

The Journal of Industrial Microbiology and Biotechnology covers all aspects of the industrial applications of biotechnology, fermentation, environmental microbiology, biodegradation, biodeterioration, molecular taxonomy, treatment of waste streams, effects of micro-organisms on the environment, and of the environment on micro-organisms, microbial diversity and certain aspects of quality control and other aspects of applied microbiology of interest to scientists in industry, government and academe.

Current impact factor: 2.51

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 2.505
2012 Impact Factor 2.321
2011 Impact Factor 2.735
2010 Impact Factor 2.416
2009 Impact Factor 1.798
2008 Impact Factor 1.919
2006 Impact Factor 1.416
2005 Impact Factor 1.273
2004 Impact Factor 1.267
2003 Impact Factor 1.195
2002 Impact Factor 0.777
2001 Impact Factor 0.902
2000 Impact Factor 1.052
1999 Impact Factor 1.087
1998 Impact Factor 1.092
1997 Impact Factor 1.199

Impact factor over time

Impact factor
Year

Additional details

5-year impact 2.73
Cited half-life 7.20
Immediacy index 0.28
Eigenfactor 0.01
Article influence 0.70
Website Journal of Industrial Microbiology and Biotechnology website
Other titles Journal of industrial microbiology & biotechnology (Online), Journal of industrial microbiology and biotechnology
ISSN 1367-5435
OCLC 39928819
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as arXiv.org
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Establishment of novel metabolic pathways for biosynthesis of chemicals, fuels and pharmaceuticals has been demonstrated in Escherichia coli due to its ease of genetic manipulation and adaptability to varying oxygen levels. E. coli growing under microaerobic condition is known to exhibit features of both aerobic and anaerobic metabolism. In this work, we attempt to engineer this metabolism for production of 1,2-propanediol. We first redirect the carbon flux by disrupting carbon-competing pathways to increase the production of 1,2-propanediol microaerobically from 0.25 to 0.85 g/L. We then disrupt the first committed step of E. coli's ubiquinone biosynthesis pathway (ubiC) to prevent the oxidation of NADH in microaerobic conditions. Coupling this strategy with carbon flux redirection leads to enhanced production of 1,2-propanediol at 1.2 g/L. This work demonstrates the production of non-native reduced chemicals in E. coli by engineering its microaerobic metabolism.
    Journal of Industrial Microbiology and Biotechnology 05/2015; DOI:10.1007/s10295-015-1622-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: The co-culture system of the fermentation process of vitamin C can be regarded as an artificial microbial ecosystem (AME). To extend our understanding of this AME, an investigation of the relationship between strains, substrate and product was carried out in this study. The results showed that both Ketogulonicigenium vulgare and 2-keto-l-gulonic acid (2-KLG, the precursor of vitamin C) can inhibit the growth of the helper strain, while the helper strain promoted the growth of K. vulgare and 2-KLG production. Moreover, l-sorbose is not only a substrate for 2-KLG production in the AME, but also a promoter of K. vulgare and an inhibitor of the helper strain. In the earlier stage of fermentation, the inhibition of l-sorbose on the helper strain's growth is a key factor for ensuring an efficient fermentation. In the condition of adding the extra helper strain (OD: 0.57, ratio of inoculation: 2 %), the yields of 2-KLG is increased by 9 % in the 14 % l-sorbose medium. To the best of our knowledge, this is the first report about the inhibition of substrate in the AME of 2-KLG production.
    Journal of Industrial Microbiology and Biotechnology 04/2015; 42(6):897-904.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rapamycin is an important natural macrolide antibiotic with antifungal, immunosuppressive and anticancer activity produced by Streptomyces hygroscopicus. In this study, a mutant strain obtained by ultraviolet mutagenesis displayed higher rapamycin production capacity compared to the wild-type S. hygroscopicus ATCC 29253. To gain insights into the mechanism of rapamycin overproduction, comparative metabolic profiling between the wild-type and mutant strain was performed. A total of 86 metabolites were identified by gas chromatography-mass spectrometry. Pattern recognition methods, including principal component analysis, partial least squares and partial least squares discriminant analysis, were employed to determine the key biomarkers. The results showed that 22 potential biomarkers were closely associated with the increase of rapamycin production and the tremendous metabolic difference was observed between the two strains. Furthermore, metabolic pathway analysis revealed that amino acids metabolism played an important role in the synthesis of rapamycin, especially lysine, valine, tryptophan, isoleucine, glutamate, arginine and ornithine. The inadequate supply of amino acids, or namely "nitrogen starvation" occurred in the mutant strain. Subsequently, the exogenous addition of amino acids into the fermentation medium of the mutant strain confirmed the above conclusion, and rapamycin production of the mutant strain increased to 426.7 mg/L after adding lysine, approximately 5.8-fold of that in the wild-type strain. Finally, the results of real-time PCR and enzyme activity assays demonstrated that dihydrodipicolinate synthase involved with lysine metabolism played vital role in the biosynthesis of rapamycin. These findings will provide a theoretical basis for further improving production of rapamycin.
    Journal of Industrial Microbiology and Biotechnology 04/2015; DOI:10.1007/s10295-015-1611-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: The production of biogas (methane) by an anaerobic digestion is an important facet to renewable energy, but is subject to instability due to the sensitivity of strictly anaerobic methanogenic archaea (methanogens) to environmental perturbations, such as oxygen. An understanding of the oxidant-sensing mechanisms used by methanogens may lead to the development of more oxidant tolerant (i.e., stable) methanogen strains. MsvR is a redox-sensitive transcriptional regulator that is found exclusively in methanogens. We show here that oxidation of MsvR from Methanosarcina acetivorans (MaMsvR) with hydrogen peroxide oxidizes cysteine thiols, which inactivates MaMsvR binding to its own promoter (P msvR ). Incubation of oxidized MaMsvR with the M. acetivorans thioredoxin system (NADPH, MaTrxR, and MaTrx7) results in reduction of the cysteines back to thiols and activation of P msvR binding. These data confirm that cysteines are critical for the thiol-disulfide regulation of P msvR binding by MaMsvR and support a role for the M. acetivorans thioredoxin system in the in vivo activation of MaMsvR. The results support the feasibility of using MaMsvR and P msvR , along with the Methanosarcina genetic system, to design methanogen strains with oxidant-regulated gene expression systems, which may aid in stabilizing anaerobic digestion.
    Journal of Industrial Microbiology and Biotechnology 03/2015; 42(6). DOI:10.1007/s10295-015-1592-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: By the facile adhesion way, the novel composite complex by polydopamine (PDA) and magnetic graphite nanosheets (Fe3O4@GNSs) has been successfully synthesized. The resulting composite was characterized by means of scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectra, and Raman spectra, X-ray diffraction, X-ray photoelectron spectroscopy, and vibrating sample magnetometry. Meanwhile, the PDA functionalized Fe3O4@GNSs (Fe3O4@GNSs-PDA) was applied for Candida rugosa lipase (CRL) immobilization covalently without any toxic coupling agent. Combining the superior physical properties and chemical stability of Fe3O4@GNSs and the well biocompatibility, functional characteristics of PDA, the Fe3O4@GNSs-PDA composite displayed several advantages, including the high enzyme capacity, enzyme activity and stability and a decrease in enzyme loss. Our work demonstrated that the mussel-inspired Fe3O4@GNSs can be extended to many other applications such as biocatalytic, genetic and industrial.
    Journal of Industrial Microbiology and Biotechnology 03/2015; 42(5). DOI:10.1007/s10295-015-1602-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: The full-length cDNA sequence of Aueh2, a gene encoding an epoxide hydrolase of Aspergillus usamii E001 (abbreviated to AuEH2), was amplified from the total RNA. Synchronously, the complete DNA sequence containing 5', 3' flanking regions, eight exons and seven introns was cloned from the genomic DNA. In addition, a cDNA fragment of Aueh2 encoding a 395-aa AuEH2 was expressed in Escherichia coli. The catalytic activity of recombinant AuEH2 (re-AuEH2) was 1.44 U/ml using racemic styrene oxide (SO) as the substrate. The purified re-AuEH2 displayed the maximum activity at pH 7.0 and 35 °C. It was highly stable at a pH range of 5.0-7.5, and at 40 °C or below. Its activity was not obviously influenced by β-mercaptoethanol, EDTA and most of metal ions tested, but was inhibited by Hg(2+), Sn(2+), Cu(2+), Fe(3+) and Zn(2+). The K m and V max of re-AuEH2 were 5.90 mM and 20.1 U/mg towards (R)-SO, while 7.66 mM and 3.19 U/mg towards (S)-SO. Its enantiomeric ratio (E) for resolution of racemic SO was 24.2 at 10 °C. The experimental result of re-AuEH2 biasing towards (R)-SO was consistent with the analytical one by molecular docking (MD) simulation.
    Journal of Industrial Microbiology and Biotechnology 03/2015; 42(5). DOI:10.1007/s10295-015-1604-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: Isolates of Nocardia cummidelens, Nocard ia fluminea, Streptomyces albidoflavus, and Streptomyces luridiscabiei attributed as the cause of "earthy-musty" off-flavor in rainbow trout (Oncorhynchus mykiss) raised in recirculating aquaculture systems (RAS) were evaluated for the effect of temperature (10-30 °C) on biomass, geosmin, and 2-methylisoborneol (MIB) production and cellular activity. Cultures of these isolates were monitored over 7 days by measuring culture dry weight, geosmin, and MIB production using solid-phase microextraction-gas chromatography-mass spectrometry (SPME-GC-MS), and ATP production via a luminometer. Compared to the other isolates, S. luridiscabiei had significantly (P < 0.05) higher biomass (8.17 ± 0.35 mg/mL) at 15 °C (water temperature in the RAS) after 7 days incubation. In addition, S. luridiscabiei produced significantly (P < 0.05) higher geosmin (69,976 ± 15,733 ng/L) at 15 °C. At 25 °C and 30 °C, S. albidoflavus produced significantly (P < 0.05) higher geosmin (182,074 ± 60,272 ng/L and 399,991 ± 102,262 ng/L, respectively). All isolates produced MIB at 15 °C, but S. luridiscabiei produced significantly (P < 0.05) higher MIB (97,143 ± 28,972 ng/L) and ATP after 7 days. Therefore, S. luridiscabiei appears to be a likely contributor of geosmin and MIB in the RAS.
    Journal of Industrial Microbiology and Biotechnology 02/2015; 42(5). DOI:10.1007/s10295-015-1600-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new strain producing high yield of D-arabitol was isolated from hyperosmotic environments and the ITS rDNA sequencing analysis revealed it as Zygosaccharomyces rouxii. In addition, using a pH control and repeated-batch fermentation strategy in a 5-L reactor, the maximum yield and the highest volumetric productivity of D-arabitol were 93.48 ± 2.79 g/L and 1.143 g/L h, respectively. Volumetric productivity was successfully improved from 0.86 to 1.143 g/L h, which was increased by 32.9 % after 72 h of fermentation. Z. rouxii JM-C46 has potential to be used for D-arabitol and xylitol production from glucose via D-arabitol route.
    Journal of Industrial Microbiology and Biotechnology 02/2015; 42(5). DOI:10.1007/s10295-015-1603-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: (3R)-Acetoin and (2R,3R)-2,3-butanediol are important pharmaceutical intermediates. However, until now, the quantity of natural microorganisms with the ability to produce single configuration of optically pure (3R)-acetoin and (2R,3R)-2,3-butanediol is rare. In this study, a meso-2,3-butanediol dehydrogenase encoded by the slaC gene from Serratia marcescens MG1 was identified for meso-2,3-butanediol and (2S,3S)-2,3-butanediol biosynthesis. Inactivation of the slaC gene could significantly decrease meso-2,3-butanediol and (2S,3S)-2,3-butanediol and result in a large quantity of (3R)-acetoin accumulation. Furthermore, a (2R,3R)-2,3-butanediol dehydrogenase encoded by the bdhA gene from Bacillus subtilis 168 was introduced into the slaC mutant strain of Serratia marcescens MG1. Excess (2R,3R)-2,3-butanediol dehydrogenase could accelerate the reaction from (3R)-acetoin to (2R,3R)-2,3-butanediol and lead to (2R,3R)-2,3-butanediol accumulation. In fed-batch fermentation, the excess (2R,3R)-2,3-butanediol dehydrogenase expression strain could produce 89.81 g/l (2R,3R)-2,3-butanediol with a productivity of 1.91 g/l/h at 48 h. These results provided potential applications for (3R)-acetoin and (2R,3R)-2,3-butanediol production.
    Journal of Industrial Microbiology and Biotechnology 02/2015; 42(6). DOI:10.1007/s10295-015-1598-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: Muconic acid (MA) is a promising bulk chemical due to its extensive industrial applications in the production of adipic acid and other valuable, biodegradable intermediates. MA is heretofore mainly produced from petrochemicals by organic reactions which are not environmentally friendly or renewable. Biological production processes provide a promising alternative for MA production. We designed an artificial pathway in Escherichia coli for the biosynthesis of MA using the catechol group of 2,3-dihydroxybenzoate, an intermediate in the enterobactin biosynthesis pathway. This approach consists of two heterologous microbial enzymes, including 2,3-dihydroxybenzoate decarboxylase and catechol 1,2-dioxygenase. The metabolic flow of carbon into the heterologous pathway was optimized by increasing the flux from chorismate through the enterobactin biosynthesis pathway and by regulating the shikimate pathway. Metabolic optimization enabled a concentration of 605.18 mg/L of MA from glucose in a shaking flask culture, a value nearly 484-fold higher than that of the initial recombinant strain. The results indicated that the production of MA from this pathway has the potential for further improvement.
    Journal of Industrial Microbiology and Biotechnology 02/2015; 42(5). DOI:10.1007/s10295-014-1581-6