Physics in Medicine and Biology (Phys Med Biol )

Publisher: Institute of Physics (Great Britain)

Description

Subject coverage. The application of theoretical and practical physics to medicine, physiology and biology. Papers on physics with no obvious medical or biological applications, or papers which are almost entirely clinical or biological in their approach are not acceptable.

  • Impact factor
    2.70
  • 5-year impact
    2.92
  • Cited half-life
    6.80
  • Immediacy index
    0.45
  • Eigenfactor
    0.04
  • Article influence
    0.84
  • Website
    Physics in Medicine and Biology website
  • Other titles
    Physics in medicine & biology (Online), Physics in medicine and biology
  • ISSN
    1361-6560
  • OCLC
    34482128
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: A Whole Body Counter (WBC) is a facility to routinely assess the internal contamination of exposed workers, especially in the case of radiation release accidents. The calibration of the counting device is usually done by using anthropomorphic physical phantoms representing the human body. Due to such a challenge of constructing representative physical phantoms a virtual calibration has been introduced. The use of computational phantoms and the Monte Carlo method to simulate radiation transport have been demonstrated to be a worthy alternative. In this study we introduce a methodology developed for the creation of realistic computational voxel phantoms with adjustable posture for WBC calibration. The methodology makes use of different software packages to enable the creation and modification of computational voxel phantoms. This allows voxel phantoms to be developed on demand for the calibration of different WBC configurations. This in turn helps to study the major source of uncertainty associated with the in vivo measurement routine which is the difference between the calibration phantoms and the real persons being counted. The use of realistic computational phantoms also helps the optimization of the counting measurement. Open source codes such as MakeHuman and Blender software packages have been used for the creation and modelling of 3D humanoid characters based on polygonal mesh surfaces. Also, a home-made software was developed whose goal is to convert the binary 3D voxel grid into a MCNPX input file. This paper summarizes the development of a library of phantoms of the human body that uses two basic phantoms called MaMP and FeMP (Male and Female Mesh Phantoms) to create a set of male and female phantoms that vary both in height and in weight. Two sets of MaMP and FeMP phantoms were developed and used for efficiency calibration of two different WBC set-ups: the Doel NPP WBC laboratory and AGM laboratory of SCK-CEN in Mol, Belgium.
    Physics in Medicine and Biology 10/2014; 59(22):6811-6825.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Respiratory and cardiac motions can degrade myocardial perfusion SPECT (MPS) image quality and reduce defect detection and quantitative accuracy. In this study, we developed a dual respiratory and cardiac gating system for a high-resolution fully stationary cardiac SPECT scanner in order to improve the image quality and defect detection. Respiratory motion was monitored using a compressive sensor pillow connected to a dual respiratory–cardiac gating box, which sends cardiac triggers only during end-expiration phases to the single cardiac trigger input on the SPECT scanners. The listmode data were rebinned retrospectively into end-expiration frames for respiratory motion reduction or eight cardiac gates only during end-expiration phases to compensate for both respiratory and cardiac motions. The proposed method was first validated on a motion phantom in the presence and absence of multiple perfusion defects, and then applied on 11 patient studies with and without perfusion defects. In the normal phantom studies, the end-expiration gated SPECT (EXG-SPECT) reduced respiratory motion blur and increased myocardium to blood pool contrast by 51.2% as compared to the ungated images. The proposed method also yielded an average of 11.2% increase in myocardium to defect contrast as compared to the ungated images in the phantom studies with perfusion defects. In the patient studies, EXG-SPECT significantly improved the myocardium to blood pool contrast (p < 0.005) by 24% on average as compared to the ungated images, and led to improved perfusion uniformity across segments on polar maps for normal patients. For a patient with defect, EXG-SPECT improved the defect contrast and definition. The dual respiratory–cardiac gating further reduced the blurring effect, increased the myocardium to blood pool contrast significantly by 36% (p < 0.05) compared to EXG-SPECT, and further improved defect characteristics and visualization of fine structures at the expense of increased noise on the patient with defect. The results showed that the proposed methods can effectively reduce motion blur in the images caused by both respiratory and cardiac motions, which may lead to more accurate defect detection and quantifications. This approach can be easily adapted in routine clinical practice on currently available commercial systems.
    Physics in Medicine and Biology 09/2014; 59(20):6267-6287.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Accurate and robust estimation of motion fields in respiration-correlated CT (4D CT) images, usually performed by non-linear registration of the temporal CT frames, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported diagnostics and treatment planning.In this work, we present a comprehensive comparison and evaluation study of non-linear registration variants applied to the task of lung motion estimation in thoracic 4D CT data. In contrast to existing multi-institutional comparison studies (e.g. MIDRAS and EMPIRE10), we focus on the specific but common class of variational intensity-based non-parametric registration and analyze the impact of the different main building blocks of the underlying optimization problem: the distance measure to be minimized, the regularization approach and the transformation space considered during optimization. In total, 90 different combinations of building block instances are compared.Evaluated on proprietary and publicly accessible 4D CT images, landmark-based registration errors (TRE) between 1.14 and 1.20 mm for the most accurate registration variants demonstrate competitive performance of the applied general registration framework compared to other state-of-the-art approaches for lung CT registration. Although some specific trends can be observed, effects of interchanging individual instances of the building blocks on the TRE are in general rather small (no single outstanding registration variant existing); the same level of accuracy is, however, associated with significantly different degrees of motion field smoothness and computational demands. Consequently, the building block combination of choice will depend on application-specific requirements on motion field characteristics.
    Physics in Medicine and Biology 07/2014; 59(15):4247-4260.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of alternating electric fields has been recently proposed for the treatment of recurrent glioblastoma. In order to predict the electric field distribution in the brain during the application of such tumor treating fields (TTF), we constructed a realistic head model from MRI data and placed transducer arrays on the scalp to mimic an FDA-approved medical device. Values for the tissue dielectric properties were taken from the literature; values for the device parameters were obtained from the manufacturer. The finite element method was used to calculate the electric field distribution in the brain. We also included a ‘virtual lesion’ in the model to simulate the presence of an idealized tumor. The calculated electric field in the brain varied mostly between 0.5 and 2.0 V cm − 1 and exceeded 1.0 V cm − 1 in 60% of the total brain volume. Regions of local field enhancement occurred near interfaces between tissues with different conductivities wherever the electric field was perpendicular to those interfaces. These increases were strongest near the ventricles but were also present outside the tumor’s necrotic core and in some parts of the gray matter–white matter interface. The electric field values predicted in this model brain are in reasonably good agreement with those that have been shown to reduce cancer cell proliferation in vitro. The electric field distribution is highly non-uniform and depends on tissue geometry and dielectric properties. This could explain some of the variability in treatment outcomes. The proposed modeling framework could be used to better understand the physical basis of TTF efficacy through retrospective analysis and to improve TTF treatment planning.
    Physics in Medicine and Biology 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Motion mitigation strategies are needed to fully realize the theoretical advantages of scanned ion beam therapy for patients with moving tumors. The purpose of this study was to determine whether a new four-dimensional (4D) optimization approach for scanned-ion-beam tracking could reduce dose to avoidance volumes near a moving target while maintaining target dose coverage, compared to an existing 3D-optimized beam tracking approach. We tested these approaches computationally using a simple 4D geometrical phantom and a complex anatomic phantom, that is, a 4D computed tomogram of the thorax of a lung cancer patient. We also validated our findings using measurements of carbon-ion beams with a motorized film phantom. Relative to 3D-optimized beam tracking, 4D-optimized beam tracking reduced the maximum predicted dose to avoidance volumes by 53% in the simple phantom and by 13% in the thorax phantom. 4D-optimized beam tracking provided similar target dose homogeneity in the simple phantom (standard deviation of target dose was 0.4% versus 0.3%) and dramatically superior homogeneity in the thorax phantom (D5-D95 was 1.9% versus 38.7%). Measurements demonstrated that delivery of 4D-optimized beam tracking was technically feasible and confirmed a 42% decrease in maximum film exposure in the avoidance region compared with 3D-optimized beam tracking. In conclusion, we found that 4D-optimized beam tracking can reduce the maximum dose to avoidance volumes near a moving target while maintaining target dose coverage, compared with 3D-optimized beam tracking.
    Physics in Medicine and Biology 07/2014; 59(13):3431-52.
  • Physics in Medicine and Biology 06/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In vivo fluorescence imaging has been a popular functional imaging modality in preclinical imaging. Near infrared probes used in fluorescence molecular tomography (FMT) are designed to localize in the targeted tissues, hence sparse solution to the FMT image reconstruction problem is preferred. Nonconvex regularization methods are reported to enhance sparsity in the fields of statistical learning, compressed sensing etc. We investigated such regularization methods in FMT for small animal imaging with numerical simulations and phantom experiments. We adopted a majorization-minimization algorithm for the iterative reconstruction process and compared the reconstructed images using our proposed nonconvex regularizations with those using the well known L(1) regularization. We found that the proposed nonconvex methods outperform L(1) regularization in accurately recovering sparse targets in FMT.
    Physics in Medicine and Biology 05/2014; 59(12):2901-2912.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Physics in Medicine and Biology (PMB) awards its 'Citations Prize' to the authors of the original research paper that has received the most citations in the preceding five years (according to the Institute for Scientific Information (ISI)). The lead author of the winning paper is presented with the Rotblat Medal (named in honour of Professor Sir Joseph Rotblat, a Nobel Prize winner who also was the second-and longest serving-Editor of PMB, from 1961-1972). The winner of the 2013 Citations Prize for the paper which has received the most citations in the previous five years (2008-2012) is [Formula: see text] Figure. Four of the prize winning authors. From left to right: Thomas Istel (Philips), Jens-Peter Schlomka (with medal, MorphoDetection), Ewald Roessl (Philips), and Gerhard Martens (Philips). Title: Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography Authors: Jens Peter Schlomka(1), Ewald Roessl(1), Ralf Dorscheid(2), Stefan Dill(2), Gerhard Martens(1), Thomas Istel(1), Christian Bäumer(3), Christoph Herrmann(3), Roger Steadman(3), Günter Zeitler(3), Amir Livne(4) and Roland Proksa(1) Institutions: (1) Philips Research Europe, Sector Medical Imaging Systems, Hamburg, Germany (2) Philips Research Europe, Engineering & Technology, Aachen, Germany (3) Philips Research Europe, Sector Medical Imaging Systems, Aachen, Germany (4) Philips Healthcare, Global Research and Advanced Development, Haifa, Israel Reference: Schlomka et al 2008 Phys. Med. Biol. 53 4031-47 This paper becomes the first to win both this citations prize and also the PMB best paper prize (The Roberts Prize), which it won for the year 2008. Discussion of the significance of the winning paper can be found in this medicalphysicsweb article from the time of the Roberts Prize win (http://medicalphysicsweb.org/cws/article/research/39907). The author's enthusiasm for their prototype spectral CT system has certainly been reflected in the large number of citations the paper subsequently has received. Our warm congratulations go to the winning authors.
    Physics in Medicine and Biology 05/2014; 59(12):2861-2862.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We are developing a computerized system for bladder segmentation on CT urography (CTU), as a critical component for computer-aided detection of bladder cancer. The presence of regions filled with intravenous contrast and without contrast presents a challenge for bladder segmentation. Previously, we proposed a conjoint level set analysis and segmentation system (CLASS). In case the bladder is partially filled with contrast, CLASS segments the non-contrast (NC) region and the contrast-filled (C) region separately and automatically conjoins the NC and C region contours; however, inaccuracies in the NC and C region contours may cause the conjoint contour to exclude portions of the bladder. To alleviate this problem, we implemented a local contour refinement (LCR) method that exploits model-guided refinement (MGR) and energy-driven wavefront propagation (EDWP). MGR propagates the C region contours if the level set propagation in the C region stops prematurely due to substantial non-uniformity of the contrast. EDWP with regularized energies further propagates the conjoint contours to the correct bladder boundary. EDWP uses changes in energies, smoothness criteria of the contour, and previous slice contour to determine when to stop the propagation, following decision rules derived from training. A data set of 173 cases was collected for this study: 81 cases in the training set (42 lesions, 21 wall thickenings, 18 normal bladders) and 92 cases in the test set (43 lesions, 36 wall thickenings, 13 normal bladders). For all cases, 3D hand segmented contours were obtained as reference standard and used for the evaluation of the computerized segmentation accuracy. For CLASS with LCR, the average volume intersection ratio, average volume error, absolute average volume error, average minimum distance and Jaccard index were 84.2 ± 11.4%, 8.2 ± 17.4%, 13.0 ± 14.1%, 3.5 ± 1.9 mm, 78.8 ± 11.6%, respectively, for the training set and 78.0 ± 14.7%, 16.4 ± 16.9%, 18.2 ± 15.0%, 3.8 ± 2.3 mm, 73.8 ± 13.4% respectively, for the test set. With CLASS only, the corresponding values were 75.1 ± 13.2%, 18.7 ± 19.5%, 22.5 ± 14.9%, 4.3 ± 2.2 mm, 71.0 ± 12.6%, respectively, for the training set and 67.3 ± 14.3%, 29.3 ± 15.9%, 29.4 ± 15.6%, 4.9 ± 2.6 mm, 65.0 ± 13.3%, respectively, for the test set. The differences between the two methods for all five measures were statistically significant (p < 0.001) for both the training and test sets. The results demonstrate the potential of CLASS with LCR for segmentation of the bladder.
    Physics in Medicine and Biology 05/2014; 59(11):2767-2785.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Today, quantitative analysis of three-dimensional (3D) dynamics of the left ventricle (LV) cannot be performed directly in the catheter lab using a current angiographic C-arm system, which is the workhorse imaging modality for cardiac interventions. Therefore, myocardial wall analysis is completely based on the 2D angiographic images or pre-interventional 3D/4D imaging. In this paper, we present a complete framework to study the ventricular wall motion in 4D (3D+t) directly in the catheter lab. From the acquired 2D projection images, a dynamic 3D surface model of the LV is generated, which is then used to detect ventricular dyssynchrony. Different quantitative features to evaluate LV dynamics known from other modalities (ultrasound, magnetic resonance imaging) are transferred to the C-arm CT data. We use the ejection fraction, the systolic dyssynchrony index a 3D fractional shortening and the phase to maximal contraction (ϕi, max) to determine an indicator of LV dyssynchrony and to discriminate regionally pathological from normal myocardium. The proposed analysis tool was evaluated on simulated phantom LV data with and without pathological wall dysfunctions. The LV data used is publicly available online at https://conrad.stanford.edu/data/heart. In addition, the presented framework was tested on eight clinical patient data sets. The first clinical results demonstrate promising performance of the proposed analysis tool and encourage the application of the presented framework to a larger study in clinical practice.
    Physics in Medicine and Biology 05/2014; 59(9):2265-84.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We show that the microvasculature of mouse tumors can be visualized using propagation-based phase-contrast x-ray imaging with gas as the contrast agent. The large density difference over the gas-tissue interface provides high contrast, allowing the imaging of small-diameter blood vessels with relatively short exposure times and low dose using a compact liquid-metal-jet x-ray source. The method investigated is applied to tumors (E1A/Ras-transformed mouse embryonic fibroblasts) grown in mouse ears, demonstrating sub-15-µm-diameter imaging of their blood vessels. The exposure time for a 2D projection image is a few seconds and a full tomographic 3D map takes some minutes. The method relies on the strength of the vasculature to withstand the gas pressure. Given that tumor vessels are known to be more fragile than normal vessels, we investigate the tolerance of the vasculature of 12 tumors to gas injection and find that a majority withstand 200 mbar pressures, enough to fill 12-µm-diameter vessels with gas. A comparison of the elasticity of tumorous and non-tumorous vessels supports the assumption of tumor vessels being more fragile. Finally, we conclude that the method has the potential to be extended to the imaging of 15 µm vessels in thick tissue, including mouse imaging, making it of interest for, e.g., angiogenesis research.
    Physics in Medicine and Biology 05/2014; 59(11):2801-2811.
  • [Show abstract] [Hide abstract]
    ABSTRACT: We are developing a 1 mm resolution small animal positron emission tomography (PET) system using 3D positioning cadmium zinc telluride photon detectors comprising 40 mm × 40 mm × 5 mm crystals metalized with a cross-strip electrode pattern with a 1 mm anode strip pitch. We optimized the electrode pattern design for intrinsic sensitivity and spatial, energy and time resolution performance using a test detector comprising cathode and steering electrode strips of varying dimensions. The study found 3 and 5 mm width cathode strips locate charge-shared photon interactions near cathode strip boundaries with equal precision. 3 mm width cathode strips exhibited large time resolution variability as a function of photon interaction location between the anode and cathode planes (∼26 to ∼127.5 ns full width at half maximum (FWHM) for 0.5 mm and 4.2 mm depths, respectively). 5 mm width cathode strips by contrast exhibited more stable time resolution for the same interaction locations (∼34 to ∼83 ns FWHM), provided more linear spatial positioning in the direction orthogonal to the electrode planes, and as much as 68.4% improvement in photon sensitivity over the 3 mm wide cathode strips. The results were understood by analyzing the cathode strips' weighting functions, which indicated a stronger 'small pixel' effect in the 3 mm wide cathode strips. Photon sensitivity and anode energy resolution were seen to improve with decreasing steering electrode bias from 0 to -80 V w.r.t. the anode potential. A slight improvement in energy resolution was seen for wider steering electrode strips (400 versus 100 µm) for charge-shared photon interactions. Although this study successfully focused on electrode pattern features for PET performance, the results are generally applicable to semiconductor photon detectors employing cross-trip electrode patterns.
    Physics in Medicine and Biology 05/2014; 59(11):2599-2621.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work continues previous research about multiple scattering of polarized light propagation in turbid media, putting emphasis on the imaginary part of the scatterers' complex refractive index. The whole angle-dependent Müller matrix is evaluated by comparing results of a polarization sensitive radiative transfer solution to Maxwell theory. Turbid media of defined scatterer concentrations are modelled in three dimensions by sphere ensembles kept inside a cubic or spherical simulation volume. This study addresses the impact of absorption on polarization characteristics for selected media from low to high absorption. Besides that, effects caused by multiple and dependent scattering are shown for increasing volume concentration. In this context some unique properties associated with multiple scattering and absorption are pointed out. Further, scattering results in two dimensions are compared for examples of infinite parallel cylinders of high absorption and perpendicularly incident plane waves.
    Physics in Medicine and Biology 05/2014; 59(11):2583-2597.
  • [Show abstract] [Hide abstract]
    ABSTRACT: There is interest in developing computed tomography (CT) dedicated to breast-cancer imaging. Because breast tissues are radiation-sensitive, the total radiation exposure in a breast-CT scan is kept low, often comparable to a typical two-view mammography exam, thus resulting in a challenging low-dose-data-reconstruction problem. In recent years, evidence has been found that suggests that iterative reconstruction may yield images of improved quality from low-dose data. In this work, based upon the constrained image total-variation minimization program and its numerical solver, i.e., the adaptive steepest descent-projection onto the convex set (ASD-POCS), we investigate and evaluate iterative image reconstructions from low-dose breast-CT data of patients, with a focus on identifying and determining key reconstruction parameters, devising surrogate utility metrics for characterizing reconstruction quality, and tailoring the program and ASD-POCS to the specific reconstruction task under consideration. The ASD-POCS reconstructions appear to outperform the corresponding clinical FDK reconstructions, in terms of subjective visualization and surrogate utility metrics.
    Physics in Medicine and Biology 05/2014; 59(11):2659-2685.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study investigates the in vivo therapeutic capabilities of transcostal histotripsy without using aberration correction mechanisms and its thermal impact on overlying tissues. Non-invasive liver treatments were conducted in eight pigs, with four lesions generated through transcostal windows with full ribcage obstruction and four lesions created through transabdominal windows without rib coverage. Treatments were performed by a 750 kHz focused transducer using 5 cycle pulses at 200 Hz PRF, with estimated in situ peak negative pressures of 13-17 MPa. Temperatures on overlying tissues including the ribs were measured with needle thermocouples inserted superficially beneath the skin. Treatments of approximately 40 min were applied, allowing overlying tissue temperatures to reach saturation. Lesions yielded statistically comparable ablation volumes of 3.6 ± 1.7 cm(3) and 4.5 ± 2.0 cm(3) in transcostal and transabdominal treatments, respectively. The average temperature increase observed in transcostal treatments was 3.9 ± 2.1 °C, while transabdominal treatments showed an increase of 1.7 ± 1.3 °C. No damage was seen on the ribcage or other overlying tissues. These results indicate that histotripsy can achieve effective treatment through the ribcage in vivo without requiring correction mechanisms, while inducing no substantial thermal effects or damage to overlying tissues. Such capabilities could benefit several non-invasive therapy applications involving transcostal treatment windows.
    Physics in Medicine and Biology 05/2014; 59(11):2553-2568.