Publisher: Springer Verlag

Journal description

Apoptosis is an international peer-reviewed journal published bimonthly. The Journal is devoted to the rapid publication of innovative basic and clinically-oriented investigations into programmed cell death. It aims to stimulate both research on the basis of mechanisms of apoptosis and on its role in various human disease processes including: cancer autoimmune disease viral infection AIDS cardiovascular disease neurodegenerative disorders osteoporosis and ageing. The Editor-In-Chief recognises the need to encourage the development of clinical therapies against apoptosis-related diseases.

Current impact factor: 3.61

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 3.614
2012 Impact Factor 3.949
2011 Impact Factor 4.788
2010 Impact Factor 4.397
2009 Impact Factor 4.066
2008 Impact Factor 3.971
2007 Impact Factor 3.043
2006 Impact Factor 3.421
2005 Impact Factor 4.497
2004 Impact Factor 4.54
2003 Impact Factor 4.563
2002 Impact Factor 3.421
2001 Impact Factor 0.909
2000 Impact Factor 0.949
1999 Impact Factor 1.585

Impact factor over time

Impact factor

Additional details

5-year impact 4.16
Cited half-life 5.50
Immediacy index 0.63
Eigenfactor 0.01
Article influence 1.24
Website Apoptosis website
Other titles Apoptosis (Online)
ISSN 1360-8185
OCLC 37773456
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as arXiv.org
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Human (HN) prevents stress-induced apoptosis in many cells/tissues. In this study we showed that HN ameliorated chemotherapy [cyclophosphamide (CP) and Doxorubicin (DOX)]-induced male germ cell apoptosis both ex vivo in seminiferous tubule cultures and in vivo in the testis. HN acts by several putative mechanisms via binding to: an IL-12 like trimeric membrane receptor; BAX; or insulin-like growth factor binding protein-3 (IGFBP-3, a proapoptotic factor). To understand the mechanisms of HN on male germ cell apoptosis, we studied five HN analogues including: HNG (HN-S14G, a potent agonist), HNG-F6A (no binding to IGFBP-3), HN-S7A (no self-dimerization), HN-C8P (no binding to BAX), and HN-L12A (a HN antagonist) on CP-induced male germ cell apoptosis in mice. CP-induced germ cell apoptosis was inhibited by HN, HNG, HNG-F6A, HN-S7A, and HN-C8P (less effective); but not by HN-L12A. HN-L12A, but not HN-S7A or HN-C8P, blocked the protective effect of HN against CP-induced male germ cell apoptosis. HN, HN-S7A, and HN-C8P restored CP-suppressed STAT3 phosphorylation. These results suggest that HN: (1) decreases DOX (ex vivo) and CP (in vivo) induced male germ cell apoptosis; (2) action is mediated by the membrane receptor/STAT3 with minor contribution by BAX-binding pathway; (3) self-dimerization or binding to IGFBP-3 may not be involved in HN's effect in testis. HN is an important molecule in the regulation of germ cell homeostasis after injury and agonistic analogues may be developed for treating male infertility or protection against chemotherapy side effects.
    APOPTOSIS 02/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Similar to apoptosis of nucleated cells, erythrocytes may undergo eryptosis, a suicidal death characterized by cell shrinkage and phospholipid scrambling of the cell membrane leading to phosphatidylserine exposure at the cell surface. As eryptotic erythrocytes are rapidly cleared from circulating blood, excessive eryptosis may lead to anemia. Moreover, eryptotic erythrocytes may adhere to the vascular wall and thus impede microcirculation. Stimulators of eryptosis include osmotic shock, oxidative stress and energy depletion. Mechanisms involved in the stimulation eryptosis include ceramide formation which may result from phospholipase A2 dependent formation of platelet activating factor (PAF) with PAF dependent stimulation of sphingomyelinases. Enhanced erythrocytic ceramide formation is observed in fever, sepsis, HUS, uremia, hepatic failure, and Wilson's disease. Enhanced eryptosis is further observed in iron deficiency, phosphate depletion, dehydration, malignancy, malaria, sickle-cell anemia, beta-thalassemia and glucose-6-phosphate dehydrogenase-deficiency. Moreover, eryptosis is triggered by osmotic shock and a wide variety of xenobiotics, which are again partially effective by enhancing ceramide abundance. Ceramide formation is inhibited by high concentrations of urea. As shown in Wilson's disease, pharmacological interference with ceramide formation may be a therapeutic option in the treatment of eryptosis inducing clinical disorders.
    APOPTOSIS 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has become widely accepted that along with their ability to directly regulate gene expression, estrogens also influence cell signalling and cell function via rapid membrane-initiated events. Many of these signalling processes are dependent on estrogen receptors (ER) localized to the plasma membrane. However, the mechanisms by which ER are able to trigger cell signalling when targeted to the membrane surface have to be determined yet. Lipid rafts seem to be essential for the plasma membrane localization of ER and play a critical role in their membrane-initiated effects. In this review, we briefly recapitulate the localization and function of ER in different cell types and mostly discuss the possible role of lipid rafts in this context. Further studies in this field may disclose new promising therapeutic avenues by the disruption of lipid rafts in those diseases in which membrane ER activation has been demonstrated to play a pathogenetic role.
    APOPTOSIS 01/2015;
  • APOPTOSIS 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: X-linked inhibitor of apoptosis (XIAP) is a protein that possesses anti-apoptotic function and dysregulation of it has been linked to a number human disease such as cancers and neurodegenerative disorders. In our previous study, we have found that nitric oxide (NO) can modulate the anti-apoptotic function of XIAP and found that this can contribute to the pathogenesis of Parkinson's disease. Specifically, we found that modification of baculoviral IAP repeat 2 of XIAP by S-nitrosylation can compromise XIAP's anti-caspase 3 and anti-apoptotic function. In this study, we report that cysteine (Cys) 90, Cys 213 and Cys 327 can be specifically S-nitrosylated by NO. We found that mutations of Cys 90 and Cys 327 affect the normal structure of XIAP. More importantly, we found that S-nitrosylation of XIAP Cys 213 impairs the anti-caspase 3 and anti-apoptotic function of XIAP that we observed in our previous study.
    APOPTOSIS 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In our previous study, 17β-estradiol was proved to protect rat annulus fibrosus cells against apoptosis induced by interleukin-1β (IL-1β). However, whether 17β-estradiol has protective effect on rat nucleus pulposus cells remains unclear. The purpose of this study was to further explore the effects of 17β-estradiol on rat nucleus pulposus cells based on IL-1β-induced apoptosis. TUNEL assay and Annexin V/PI double staining were used to detect apoptosis and revealed that IL-1β induced notable apoptosis, which was reversed by 17β-estradiol. Meanwhile, cell viability and binding ability were decreased by IL-1β, but activated caspase-3 was increased. However, all of the detected effects of IL-1β were eliminated by 17β-estradiol. Furthermore, real-time quantitative RT-PCR was used to further find that IL-1β downregulated expression level of type II collagen, aggrecan, tissue inhibitor of matrix metalloproteinase (TIMP)-1, while upregulated matrix metalloproteinase (MMP)-3, MMP-13 and Bcl-2, which was further confirmed by western blot. Finally, 17β-estradiol was proved to abolish the above negative effects of IL-1β. In summary, this work presented that IL-1β maybe induced apoptosis of rat nucleus pulposus cells, which was resisted by 17β-estradiol by down-regulating MMP-3 and MMP-13 via a mitochondrial pathway. This research provides a novel insight into the anti-apoptotic effect of 17β-estradiol on IL-1β-induced cytotoxicity, and may potentially lead to a better understanding of the clinical effects of 17β-estradiol, especially in terms of intervertebral disc degeneration.
    APOPTOSIS 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study the mechanism of avian reovirus (ARV) S1133-induced pathogenesis was investigated, with a focus on the contribution of ER stress to apoptosis. Our results showed that upregulation of the ER stress response protein, as well as caspase-3 activation, occurred in ARV S1133-infected cultured cells and in SPF White Leghorn chicks organs. Upon infection, Bim was translocated specifically to the ER, but not mitochondria, in the middle to late infectious stages. In addition, ARV S1133 induced JNK phosphorylation and promoted JNK–Bim complex formation, which correlated with the Bim translocation and apoptosis induction that was observed at the same time point. Knockdown of BiP/GRP78 by siRNA and inhibition of BiP/GRP78 using EGCG both abolished the formation of the JNK–Bim complex, caspase-3 activation, and subsequent apoptosis induction by ARV S1133 efficiently. These results suggest that BiP/GRP78 played critical roles and works upstream of JNK–Bim in response to the ARV S1133-mediated apoptosis process.
    APOPTOSIS 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Innate immunity, which is the first line of host defense against invading microbial pathogens in multicellular organisms, occurs through germline-encoded pattern-recognition receptors. The Toll-like receptor/Interleukin (IL)-1 receptor (TLR/IL-1R) superfamily comprises proteins that contain the phylogenetically conserved Toll/IL-1 receptor (TIR) domain, which is responsible for the propagation of downstream signaling through recruitment of TIR domain containing cytosolic adaptor proteins such as MyD88, TIRAP/MAL, TRIF, TRAM and SARM. These interactions activate transcription factors that regulate the expression of various proinflammatory cytokines (IL-1, IL-6, IL-8 and TNF-α) and chemokines. Activation of the TLR/IL-1R signaling pathway promotes the onset of inflammatory diseases, autoimmune diseases and cancer; therefore, this pathway can be used for the development of therapeutic strategies against these types of pathogenesis. In this review paper, we illustrate the role of the TIR–TIR domain interaction with the TLR/IL-1R signaling pathway in inflammation and apoptosis and recent therapeutic drugs targeted to inhibit the downstream signaling cascade for treatment of inflammatory diseases and cancer.
    APOPTOSIS 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Eosinophils (Eos) are potent inflammatory cells and abundantly present in the sputum and lung of patients with allergic asthma. During both transit to and residence in the lung, Eos contact prosurvival cytokines, particularly IL-3, IL-5 and GM-CSF, that attenuate cell death. Cytokine signaling modulates the expression and function of a number of intracellular pro- and anti-apoptotic molecules. Both intrinsic mitochondrial and extrinsic receptor-mediated pathways are affected. This article discusses the fundamental role of the extracellular and intracellular molecules that initiate and control survival decisions by human Eos and highlights the role of the cis–trans isomerase, Pin1 in controlling these processes.
    APOPTOSIS 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissue inhibitor of metalloproteinases-3 (TIMP3) is a tumor suppressor and a potent inhibitor of angiogenesis. TIMP3 exerts its anti-angiogenic effect via a direct interaction with vascular endothelial growth factor (VEGF) receptor-2 (KDR) and inhibition of proliferation, migration and tube formation of endothelial cells (ECs). TIMP3 has also been shown to induce apoptosis in some cancer cells and vascular smooth muscle cells via MMP inhibition and caspase-dependent mechanisms. In this study, we examined the molecular mechanisms of TIMP3-mediated apoptosis in endothelial cells. We have previously demonstrated that mice developed smaller tumors with decreased vascularity when injected with breast carcinoma cells overexpressing TIMP3, than with control breast carcinoma cells. TIMP3 overexpression resulted in increased apoptosis in human breast carcinoma (MDA-MB435) in vivo but not in vitro. However, TIMP3 could induce apoptosis in ECs in vitro. The apoptotic activity of TIMP3 in ECs appears to be independent of MMP inhibitory activity. Furthermore, the equivalent expression of functional TIMP3 promoted apoptosis and caspase activation in ECs expressing KDR (PAE/KDR), but not in ECs expressing PDGF beta-receptor (PAE/β-R). Surprisingly, the apoptotic activity of TIMP3 appears to be independent of caspases. TIMP3 inhibited matrix-induced focal adhesion kinase (FAK) tyrosine phosphorylation and association with paxillin and disrupted the incorporation of β3 integrin, FAK and paxillin into focal adhesion contacts on the matrix, which were not affected by caspase inhibitors. Thus, TIMP3 may induce apoptosis in ECs by triggering a caspase-independent cell death pathway and targeting a FAK-dependent survival pathway.
    APOPTOSIS 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Apoptosis has a role in many medical disorders and treatments; hence, its non-invasive evaluation is one of the most riveting research topics. Currently annexin V is used as gold standard for imaging apoptosis. However, several drawbacks, including high background, slow body clearance, make it a suboptimum marker for apoptosis imaging. In this study, we radiolabeled the recently identified histone H1 targeting peptide (ApoPep-1) and evaluated its potential as a new apoptosis imaging agent in various animal models. ApoPep-1 (CQRPPR) was synthesized, and an extra tyrosine residue was added to its N-terminal end for radiolabeling. This peptide was radiolabeled with (124)I and (131)I and was tested for its serum stability. Surgery- and drug-induced apoptotic rat models were prepared for apoptosis evaluation, and PET imaging was performed. Doxorubicin was used for xenograft tumor treatment in mice, and the induced apoptosis was studied. Tumor metabolism and proliferation were assessed by [(18)F]FDG and [(18)F]FLT PET imaging and compared with ApoPep-1 after doxorubicin treatment. The peptide was radiolabeled at high purity, and it showed reasonably good stability in serum. Cell death was easily imaged by radiolabeled ApoPep-1 in an ischemia surgery model. And, liver apoptosis was more clearly identified by ApoPep-1 rather than [(124)I]annexin V in cycloheximide-treated models. Three doxorubicin doses inhibited tumor growth, which was evaluated by 30-40 % decreases of [(18)F]FDG and [(18)F]FLT PET uptake in the tumor area. However, ApoPep-1 demonstrated more than 200 % increase in tumor uptake after chemotherapy, while annexin V did not show any meaningful uptake in the tumor compared with the background. Biodistribution data were also in good agreement with the microPET imaging results. All of the experimental data clearly demonstrated high potential of the radiolabeled ApoPep-1 for in vivo apoptosis imaging.
    APOPTOSIS 01/2015; 20(1):110-21.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Apoptotic cell death plays a pivotal role in the development and/or maintenance of several tissues including thymus. Deregulated thymic cell death is associated with autoimmune diseases including experimental autoimmune encephalomyelitis (EAE), a prototype murine model for analysis of human multiple sclerosis. Because Thy28 expression is modulated during thymocyte development, we tested whether Thy28 affects induction of EAE as effectively as antigen-induced thymocyte deletion using Thy28 transgenic (TG) mice. Thy28 TG mice showed partial resistance to anti-CD3 monoclonal antibody (mAb)-induced thymic cell death in vivo, as assessed by annexin V-expression and loss of mitochondrial membrane potential. The resistance to anti-CD3 mAb-induced cell death in Thy28 TG mice appeared to correlate with a decreased c-Jun N-terminal kinase phosphorylation and reduced down-regulation of Bcl-xL. Moreover, thymic hyperplasia was detected in Thy28 TG mice, although thymocyte development was unaltered. Development of peripheral lymphoid tissues including spleen and lymph nodes was also unaltered. Thy28 TG spleen T cells showed an increased production of IFN-γ, but not IL-17, in response to both anti-CD3 and anti-CD28 mAbs. Finally, Thy28 TG mice displayed accelerated induction of EAE as assessed by disease incidence, clinical score, and pathology following immunization with myelin oligodendrocyte glycoprotein compared with control WT mice. These findings suggest that modulation of Thy28 expression plays a crucial role in the determination of thymic cell fate, which may contribute to the development of EAE through proinflammatory cytokine production.
    APOPTOSIS 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent studies have proposed the potential role of 5-HT2B receptor (5-HT2BR) blockade in alleviating myocardial dysfunction; hitherto, the regulatory pathway for its protective effect has remained enigmatic. In the present study, we sought to investigate the role of SB-204741, a 5-HT2BR blocker in isoproterenol-induced myocardial remodeling in rats and its cross-talk with apoptosis and mitogen activated protein kinase (MAPKs)/heat shock proteins (HSPs) pathway. To assess this hypothesis, we measured the effect of SB-204741 (0.25-1.0 mg/kg/day, i.p.) in isoproterenol (85 mg/kg/day, s.c.)-induced myocardial remodeling in rats. SB-204741 dose dependently improved hemodynamic and ventricular functions following isoproterenol-induced myocardial injury. This amelioration was well substantiated with reduced expression of 5-HT2B, inflammatory proteins (NF-κBp65, IKK-β, TNF-α, IL-6, and Cox-2), MAPKs (p-p38/p38 and p-JNK/JNK ratio) accompanied with increased protein expression of HSPs (αB-crystallin, Hsp27 and Hsp70), autophagy (LC3 and Beclin-1) and p-ERK/ERK ratio. Additionally, SB-204741 inhibited apoptotic signaling pathway as there was decreased DAPI/TUNEL positivity and protein expression of cytochrome c, Bax, and caspase-3 along with increased Bcl-2 expression. Preservation of histopathological and ultrastructural components, normalization of nitric oxide level, endogenous antioxidants and myocyte injury marker enzymes were also observed. In conclusion, inhibition of apoptosis via modulation of MAPKs/HSPs is essential for 5-HT2BR blockade mediated cardioprotective effect.
    APOPTOSIS 12/2014; 20(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Endoplasmic reticulum (ER) stress responses play critical roles in the pathogenesis of tuberculosis. To investigate the regulatory role of the ER stress response in 38-kDa antigen-induced apoptosis, we examined the relationship between the ER stress response and apoptosis in bone marrow-derived macrophages (BMDMs) stimulated with Mycobacterium tuberculosis antigen (38-kDa Ag). The expression of ER molecular chaperones, including C/EBP homologous protein (CHOP), glucose-regulated protein (Bip) and phosphorylated alpha subunit of eukaryotic initiation factor 2, was induced in BMDMs stimulated with the 38-kDa Ag. Interestingly, 38-kDa Ag-stimulation induced apoptosis via activation of caspase-12, -9 and -3. However, 38-kDa Ag-induced apoptosis was significantly reduced in TLR2- and TLR4-deficient macrophages. Because toll-like receptors (TLRs) initiate the activation of mitogen-activated protein kinase (MAPK) signaling cascades, we evaluated the effect of MAPK activation on ER stress. The 38-kDa Ag activated Jun N-terminal kinase, extracellular signal-regulated kinase and p38 phosphorylation. MAPK signaling induced the secretion of proinflammatory cytokines such as MCP-1, TNF-α and IL-6. The 38-kDa Ag-induced MCP-1 was especially associated with the induction of MCP-1-induced protein (MCPIP), which increased the generation of reactive oxygen species (ROS) and ER stress. To investigate the role of MCPIP in ROS-induced ER stress by 38-kDa Ag stimulation, we transfected MCPIP siRNA into RAW264.7 cells before 38-kDa Ag stimulation, and measured the generation of ROS and expression of ER molecular chaperones. ROS production and CHOP expression were decreased by the silencing of MCPIP induction. Our results demonstrate that the expression of MCPIP by 38-kDa Ag stimulation is increased through a TLR-MAPK-dependent signaling pathway, and leads to ER stress-induced apoptosis. In conclusion, MCPIP is important for host defense mechanisms in mycobacterial pathogenesis.
    APOPTOSIS 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to investigate the role of myofibrillogenesis regulator-1 (MR-1) in cardiomyocyte apoptosis induced by hypoxia/reoxygenation (H/R), through protein kinase R-like ER kinase (PERK)/nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. To address this aim, an H/R model of neonatal rat cardiomyocytes was used. MR-1 was overexpressed using an adenoviral vector system and knocked down using MR-1 specific siRNA. Apoptosis was assessed by using Annexin V/PI double staining, terminal deoxynucleotidyl transferase mediated dUTP-biotin nick end labeling assay, and the Bcl-2/Bax ratio. Western blotting was used to detect the protein levels of MR-1, glucose-regulated protein 78 (GRP78), total and phosphorylated PERK, Nrf2, activating transcription factor 4 (ATF4), C/EBP homologous protein (CHOP), Bcl-2 and Bax. Immunofluorescence staining was used to assess the subcellular location of Nrf2. We found that H/R induced significant apoptosis in neonatal rat cardiomyocytes. MR-1 overexpression attenuated H/R-induced apoptosis, decreased GRP78 (P < 0.01) and CHOP expression (P < 0.05), and increased the Bcl-2/Bax ratio (P < 0.01). MR-1 overexpression suppressed H/R-induced PERK phosphorylation, Nrf2 nuclear translocation, and ATF4 expression (P < 0.01). While MR-1 knockdown aggravated H/R-induced apoptosis, increased expression of GRP78 and CHOP (P < 0.05), and decreased the Bcl-2/Bax ratio (P < 0.01). MR-1 knockdown significantly increased H/R-induced PERK phosphorylation (P < 0.05), Nrf2 nuclear translocation, and ATF4 expression (P < 0.01). These findings suggest that MR-1 alleviates H/R-induced cardiomyocyte apoptosis through inhibition of the PERK/Nrf2 pathway.
    APOPTOSIS 12/2014;