Journal of Bioscience and Bioengineering

Publisher: Nihon Seibutsu Kogakkai, Elsevier

Current impact factor: 1.88

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.884
2013 Impact Factor 1.79
2012 Impact Factor 1.737
2011 Impact Factor 1.793
2010 Impact Factor 1.707
2009 Impact Factor 1.749
2008 Impact Factor 1.702
2007 Impact Factor 1.782
2006 Impact Factor 1.136
2005 Impact Factor 0.948
2004 Impact Factor 0.802
2003 Impact Factor 0.993
2002 Impact Factor 0.777
2001 Impact Factor 0.865
2000 Impact Factor 0.749

Impact factor over time

Impact factor

Additional details

5-year impact 2.03
Cited half-life 7.50
Immediacy index 0.39
Eigenfactor 0.01
Article influence 0.52
Other titles Journal of bioscience and bioengineering (En ligne)
ISSN 1347-4421
OCLC 56331911
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: AgrC is an integral membrane receptor protein with histidine kinase activity in the accessory gene regulator (agr) quorum-sensing system of Staphylococcus aureus. In this study, proteoliposomes were used as a model to investigate AgrC orientation. Many approaches have been described to determine membrane protein orientation, but they are often complicated and time consuming. In this study, AgrC orientation in liposomes was determined by thiol-reactive reagent labeling and a kinase activity assay. Our results suggest use of a kinase activity assay could get an accurate percentage of functional protein orientation and only cost nearly one-sixth of the time compared with the method based on thiol-reactive reagent labeling. We present an effective and rapid method for determining the orientation of membrane protein kinases like AgrC.
    Journal of Bioscience and Bioengineering 11/2015; DOI:10.1016/j.jbiosc.2015.06.002
  • [Show abstract] [Hide abstract]
    ABSTRACT: The objective of this study was to investigate the effects of culture conditions, including carbon sources and concentration, culture period, and precondition time, on the production of extracellular polymeric substances (EPS) and its influence on microalgal flocculation. EPS are natural high molecule polymer, excreted by microalgae themselves. EPS can accelerate the formation of microbial aggregates through binding cells closely. Organic carbon sources, such as glucose, glycerol, acetate and glycine were compared to select the optimal source to stimulate EPS accumulation. Subsequently, the effect of culture period, glycine dose and precondition time on EPS production and its influence on biomass growth and flocculation efficiency were investigated. As the main parts of EPS, tightly bound EPS were found positively related to suspended solids concentration. However, the loosely bound EPS may weaken the floc structure, leading to poor water-cells separation. Under the optimal condition with culture period of 16 days, glycine dose of 0.5 g l(-1) and precondition time of 5 days, the biomass concentration increased from 1.49 to 2 g l(-1), and the maximum suspended solids concentration of 7.06% with biomass recovery rate of 70.6% was achieved.
    Journal of Bioscience and Bioengineering 11/2015; DOI:10.1016/j.jbiosc.2015.08.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: There are three acetohydroxyacid synthase (AHAS, EC isozymes (I, II, and III) in the enterobacteria Escherichia coli among which AHAS I is the most active. Its large subunit (LSU) possesses full catalytic machinery, but is unstable in the absence of the small subunit (SSU). To get applicable LSU of AHAS I, we prepared and characterized in this study the polypeptide as a His-tagged (His-LSU) and a glutathione S-transferase (GST)-tagged (GST-LSU) fusion protein, respectively. The results showed that the His-LSU is unstable, whereas the GST-LSU displays excellent stability. This phenomenon suggests that the GST polypeptide fusion tag could stabilize the target protein when compared with histidine tag. It is the first time that the stabilizing effect of the GST tag was observed. Further characterization of the GST-LSU protein indicated that it possesses the basic functions of AHAS I with a specific activity of 20.8 μmol min(-1) mg(-1) and a Km value for pyruvate of 0.95 mM. These observations imply that introduction of the GST fusion tag to LSU of AHAS I does not affect the function of the protein. The possible reasons that the GST fusion tag could make the LSU stable are initially discussed.
    Journal of Bioscience and Bioengineering 11/2015; DOI:10.1016/j.jbiosc.2015.05.010
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biochemical methane potential (BMP) tests were carried out to investigate the influence of inoculum pre-treatments (filtration and pre-incubation) on methane production from cellulose and wheat straw. First-order model and Monod model were used to evaluate the kinetic constants of the BMP assays. The results demonstrated that fresh inoculum was the best option to perform BMP tests. This was evidenced by highest enzyme activity (0.11 U/mL) and highest methane yields for cellulose (356 NmL CH4/gVS) as well as wheat straw (261 NmL CH4/gVS). Besides, high biodegradability (85.8% for cellulose and 61.3% for wheat straw) was also obtained when the fresh inoculum was used. Moreover, a kinetic evaluation showed that inoculum pre-incubation at 37°C or storage at 4°C introduced a lag-time whereas the effects on hydrolysis rate were less consequent. In summary, pre-treatments affected the enzyme activity of the inoculum, and further on, significantly influenced the methane production and the degradation kinetics of the investigated substrates. It is recommended that filtration of inoculum should be avoided unless in case too large particles therein.
    Journal of Bioscience and Bioengineering 11/2015; DOI:10.1016/j.jbiosc.2015.10.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel DNA-binding protein tag, scCro-tag, which is a single-chain derivative of the bacteriophage lambda Cro repressor, has been developed to immobilize proteins of interest (POI) on a solid support through binding OR consensus DNA (ORC) that is tightly bound by the scCro protein. The scCro-tag successfully bound a transglutaminase 2 (TGase 2) substrate and manganese peroxidase (MnP) to microbeads via scaffolding DNA. The resulting protein-coated microbeads can be utilized for functional analysis of the enzymatic activity using flow cytometry. The quantity of bead-bound proteins can be enhanced by increasing the number of ORCs. In addition, proteins with the scCro-tag that were synthesized using a cell-free protein synthesis system were also immobilized onto the beads, thus indicating that this bead-based system would be applicable to high-throughput analysis of various enzymatic activities.
    Journal of Bioscience and Bioengineering 11/2015; DOI:10.1016/j.jbiosc.2015.06.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosinase, a rate-limiting enzyme in melanin biosynthesis, catalyzes the hydroxylation of l-tyrosine to 3,4-dihydroxy-l-phenylalanine (l-dopa) (monophenolase reaction) and the subsequent oxidation of l-dopa to l-dopaquinone (diphenolase reaction). Thus, tyrosinase inhibitors have been proposed as skin-lightening agents; however, many of the existing inhibitors cannot be widely used in the cosmetic industry due to their high cytotoxicity and instability. On the other hand, some tyrosinase inhibitory peptides have been reported as safe. In this study, we found that the peptide TH10, which has a similar sequence to the characterized inhibitory peptide P4, strongly inhibits the monophenolase reaction with a half-maximal inhibitory concentration of 102 μM. Seven of the ten amino acid residues in TH10 were identical to P4; however, TH10 possesses one N-terminal tyrosine, whereas P4 contains three tyrosine residues located at its N-terminus, center, and C-terminus. Subsequent analysis using sequence-shuffled variants indicated that the tyrosine residues located at the N-terminus and center of P4 have little to no contribution to its inhibitory activity. Furthermore, docking simulation analysis of these peptides with mushroom tyrosinase demonstrated that the active tyrosine residue was positioned close to copper ions, suggesting that TH10 and P4 bind to tyrosinase as a substrate analogue.
    Journal of Bioscience and Bioengineering 11/2015; DOI:10.1016/j.jbiosc.2015.10.010
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tomato NP24 is a homolog of osmotin, a PR-5 protein from tobacco that can initiate apoptosis in yeast via PHO36 in the plasma membrane. We cloned and sequenced NP24 from tomato cv. Momotaro. Based on phylogenetic analysis, NP24 from Momotaro belonged to the Solanaceae clade. The amino acid sequence was identical to that of cv. Ailsa Craig including signal peptide, but the residues predicted to interact with the adiponectin receptor, ADIPOR, were slightly different from osmotin. Recombinant NP24 (rNP24) was expressed in a reductase-deficient mutant of Escherichia coli as host cell, and purified from cell extract by affinity chromatography. Purified rNP24 significantly inhibited growth of Saccharomyces cerevisiae wild-type spheroplasts. In contrast, growth of PHO36 deletion mutant (ΔIzh2) spheroplasts was not inhibited. Moreover, rNP24 induced significant activity of reactive oxygen species, caspase-like activity, and also nuclear fragmentation in wild-type spheroplast cells. These results demonstrated that rNP24 from Momotaro greatly influenced cell viability due to triggering apoptosis through PHO36. Notably, apoptosis induced by NP24 was caspase-like protease dependent.
    Journal of Bioscience and Bioengineering 11/2015; DOI:10.1016/j.jbiosc.2015.10.009
  • [Show abstract] [Hide abstract]
    ABSTRACT: An extracellular 1,3-1,4-β-glucanase-producing strain S2 was isolated from booklice and identified as Bacillus methylotrophicus. Furthermore, a homogeneous extracellular 1,3-1,4-β-glucanase GCS2 was purified by ammonium sulfate precipitation and cation-exchange chromatography. The gene for the 1,3-1,4-β-glucanase was cloned, and the nucleotide sequence was determined. Characterization of the purified enzyme revealed the molecular mass of 26 kDa and the optimum activity at pH 7.5, 55°C. The purified enzyme can highly hydrolyze carboxymethylcellulose including oat gum, barley β-glucan, CMC and lichenan, while low activity on avicel, cellobiose, filter paper, p-nitrophenyl β-d-cellobioside, and p-nitrophenyl β-d-glucoside, but no activity against microcrystalline cellulose or salicin. The enzyme was stable at wide range of pHs 5-10 and still maintained above 60% activity at 70°C. The enzyme activity was stimulated by Trixon X-100. The property of the enzyme GCS2 makes this enzyme a broad prospect in brewing and commercial detergent industry. To our knowledge, this is the first report of a 1,3-1,4-β-glucanase from microbes associated with booklice.
    Journal of Bioscience and Bioengineering 11/2015; DOI:10.1016/j.jbiosc.2015.10.007
  • [Show abstract] [Hide abstract]
    ABSTRACT: We reported previously that tobacco plants transformed with the human UDP-galactose transporter 1 gene (hUGT1-transgenic plants) displayed morphological, architectural, and physiological alterations, such as enhanced growth, increased accumulation of chlorophyll and lignin, and a gibberellin-responsive phenotype. In the present study, we demonstrated that hUGT1 expression altered the monosaccharide composition of cell wall matrix polysaccharides, such as pectic and hemicellulosic polysaccharides, which are biosynthesized in the Golgi lumen. An analysis of the monosaccharide composition of the cell wall matrix polysaccharides revealed that the ratio of galactose to total monosaccharides was significantly elevated in the hemicellulose II and pectin fractions of hUGT1-transgenic plants compared with that of control plants. A hyper-galactosylated xyloglucan structure was detected in hemicellulose II using oligosaccharide mass profiling. These results indicated that, because of the enhanced UDP-galactose transport from the cytosol to the Golgi apparatus by hUGT1, galactose incorporation in the cell wall matrix polysaccharides increased. This increased galactose incorporation may have contributed to increased galactose tolerance in hUGT1-transgenic plants.
    Journal of Bioscience and Bioengineering 10/2015; DOI:10.1016/j.jbiosc.2015.09.014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Thermostable variants of the Cellulomonas sp. NT3060 glycerol kinase have been constructed by through the introduction of ancestral-consensus mutations. We produced seven mutants, each having an ancestral-consensus amino acid residue that might be present in the common ancestors of both bacteria and of archaea, and that appeared most frequently at the position of 17 glycerol kinase sequences in the multiple sequence alignment. The thermal stabilities of the resulting mutants were assessed by determining their melting temperatures (Tm), which was defined as the temperature at which 50% of the initial catalytic activity is lost after 15 min of incubation, as well as when the half-life of the catalytic activity occurs at a temperature of 60°C (t1/2). Three mutants showed increased stabilities compared to the wild-type protein. We then produced five more mutants with multiple amino acid substitutions. Some of the resulting mutants showed thermal stabilities much greater than those expected given the stabilities of the respective mutants with single mutations. Therefore, the effects of mutations are not always simply additive and some amino acid substitutions, which do not affect or only slightly improve stability when individually introduced into the protein, show substantial stabilizing effects in combination with other mutations.
    Journal of Bioscience and Bioengineering 10/2015; DOI:10.1016/j.jbiosc.2015.09.011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Inonotus baumii, a basidiomycete white rot fungus, has been widely used as traditional herbal medicine in China, Korea, Japan and other Asian countries for many years. Its extract is of great medicinal importance and plays a valuable role in the immune response and disease resistance. However, limited genetic resources for I. baumii have hindered exploration of this species. In order to gain a molecular understanding of this fungus, Illumina high-throughput technology was used to sequence and analyze the transcriptome of I. baumii, and 280,691 contigs, 43,890 scaffolds and 30,051 unigenes were obtained. Additionally, based on similarity search with known proteins, unigenes were annotated with gene descriptions, gene ontology (GO), clusters of orthologous group (COG), and database of protein families (Pfam) terms. According to the annotation of unigenes, a total of 12 candidate genes involved in the triterpenoid biosynthesis pathway and 21 putative FOLymes (fungal oxidative lignin enzymes) and 176 CAZymes (carbohydrate-active enzymes) were obtained using homology-based BlastX. Moreover, for better understanding of the transcripts function, the BlastX algorithm was used to search for homologous sequences against the Yeast genome. This is the first study on transcriptome analyses of I. baumii, which provided a dataset for functional gene mining and laid a basis for further functional genomics studies of I. baumii.
    Journal of Bioscience and Bioengineering 10/2015; DOI:10.1016/j.jbiosc.2015.09.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: We adapted a mixed culture of acidophiles to high arsenic concentrations to confirm the possibility of achieving more than 70% biooxidation of refractory gold concentrates containing high arsenic (As) concentration. The biooxidation process was applied to refractory gold concentrates containing approximately 139.67 g/kg of total As in a stirred tank reactor using an adapted mixed culture of Acidithiobacillus ferrooxidans and Acidithiobacillus thiooxidans. The percentage of the biooxidation process was analyzed based on the total As removal efficiency. The As removal was monitored by inductively coupled plasma (ICP) analysis, conducted every 24 h. The results obtained with the adapted culture were compared with the percentage of biooxidation obtained with a non-adapted mixed culture of A. ferrooxidans and A. thiooxidans, and with their respective pure cultures. The percentages of biooxidation obtained during 358 h of reaction were 72.20%, 38.20%, 27.70%, and 11.45% for adapted culture, non-adapted culture, and pure cultures of A. thiooxidans and A. ferrooxidans, respectively. The adapted culture showed a peak maximum percentage of biooxidation of 77% at 120 h of reaction, confirming that it is possible to obtain biooxidation percentages over 70% in gold concentrates containing high As concentrations.
    Journal of Bioscience and Bioengineering 10/2015; DOI:10.1016/j.jbiosc.2015.09.009
  • [Show abstract] [Hide abstract]
    ABSTRACT: The major bottlenecks in achieving competitive bioethanol fuel are the high cost of feedstock, energy and enzymes employed in pretreatment prior to fermentation. Lignocellulosic biomass has been proposed as an alternative feedstock, but because of its complexity, economic viability is yet to be realized. Therefore, research around non-conventional feedstocks and deployment of bioconversion approaches that downsize the cost of energy and enzymes is justified. In this study, a non-conventional feedstock, inedible wild cassava was used for bioethanol production. Bioconversion of raw starch from the wild cassava to bioethanol at low temperature was investigated using both a co-culture of Aspergillus sp. and Saccharomyces cerevisiae, and a monoculture of the later with enzyme preparation from the former. A newly isolated strain of Aspergillus sp. MZA-3 produced raw starch-degrading enzyme which displayed highest activity of 3.3 U/mL towards raw starch from wild cassava at 50°C, pH 5.5. A co-culture of MZA-3 and S. cerevisiae; and a monoculture of S. cerevisiae and MZA-3 enzyme (both supplemented with glucoamylase) resulted into bioethanol yield (percentage of the theoretical yield) of 91 and 95 at efficiency (percentage) of 84 and 96, respectively. Direct bioconversion of raw starch to bioethanol was achieved at 30°C through the co-culture approach. This could be attractive since it may significantly downsize energy expenses.
    Journal of Bioscience and Bioengineering 10/2015; DOI:10.1016/j.jbiosc.2015.09.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: A β-galactoside α2,6-sialyltransferase (ST) from the marine bacterium Photobacterium sp. JT-ISH-224 with a broad acceptor substrate specificity was fused to a fungal biotin-binding protein tamavidin 2 (TM2) to produce immobilized enzyme. Specifically, a gene for the fusion protein, in which ST from Photobacterium sp. JT-ISH-224 and TM2 were connected via a peptide linker (ST-L-TM2) was constructed and expressed in Escherichia coli. The ST-L-TM2 was produced in the soluble form with a yield of approximately 15,000 unit/300 ml of the E. coli culture. The ST-L-TM2 was partially purified and part of it was immobilized onto biotin-bearing magnetic microbeads. The immobilized ST-L-TM2 onto microbeads could be used at least seven consecutive reaction cycles with no observed decrease in enzymatic activity. In addition, the optimum pH and temperature of the immobilized enzyme were changed compared to those of a free form of the ST. Considering these results, it was strongly expected that the immobilized ST-L-TM2 was a promising tool for the production of various kind of sialoligosaccharides.
    Journal of Bioscience and Bioengineering 10/2015; DOI:10.1016/j.jbiosc.2015.08.016
  • [Show abstract] [Hide abstract]
    ABSTRACT: Waste activated sludge (WAS) fermentation integrated with denitritation (the reduction of nitrite to dinitrogen gas) at different pHs was investigated in batch-mode reactors over a 24-day period. The results showed that in comparison with controlled pHs, the volatile fatty acid (VFA) bioproduction for in situ denitritation was significantly improved at uncontrolled pH. VFA fermented from WAS was quickly consumed by denitritation at uncontrolled pH, which accelerated sludge degradation. On the other hand, sludge digestion was benefited from the alkalinity produced from denitritation, while methanogenesis was prohibited by alkalinity and nitrite. The integrated sludge fermentation and denitritation can be cost-effectively applied to wastewater treatment plants, so that organic substrates (e.g., VFAs) are produced for denitritation via simultaneous sludge fermentation, which enables WAS reutilization and enhances nitrogen removal efficiency without the need of external carbon sources.
    Journal of Bioscience and Bioengineering 10/2015; DOI:10.1016/j.jbiosc.2015.08.007
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neural stem/progenitor cells (NSPCs) in the central nervous system (CNS) have the capacity to self-renew by proliferation and are multipotent, giving rise to neurons, astrocytes, and oligodendrocytes. NSPCs can be amplified in neurosphere suspension cultures for cell transplantation therapy to treat CNS diseases as well as for in vitro pharmacological/toxicological assays; however, these suspension cultures have certain limitations, including the inconvenience of changing the culture medium as well as difficulty of live imaging. In the present study, we prepared a gamma-crosslinked poly(vinyl alcohol) (PVA) hydrogel and assessed its suitability as a substrate for adherent NSPC cultures. Differentiation was determined by evaluating the expression of the markers nestin (progenitors), βIII tubulin (neurons), and glial fibrillary acidic protein and S100β (glia) by immunocytochemistry and quantitative reverse transcriptase PCR. The levels of the marker genes were similar between the two types of culture; although some variability was observed, there were no fold differences in expression. NSPCs adhered to the PVA gel as clusters and grew without differentiating into neurons and glia. The proliferation rate of cells grown on the soft PVA gel [3.75-7.5% (w/v) PVA] was approximately 70% of that of neurospheres in suspension. We conclude that gamma-crosslinked PVA hydrogels can function as a novel scaffold for maintaining adherent NSPCs in an undifferentiated state.
    Journal of Bioscience and Bioengineering 10/2015; DOI:10.1016/j.jbiosc.2015.09.010
  • [Show abstract] [Hide abstract]
    ABSTRACT: The d-form of lactate, which causes metabolic stress upon excessive dietary intake, is mainly produced by Leuconostoc sp., the predominant species in sauerkraut. To shift the metabolic flux of d-lactate from pyruvate to l-lactate, we expressed the l-lactate dehydrogenase (ldhL) gene in Leuconostoc mesenteroides ATCC 8293. The ldhL gene from Lactobacillus plantarum was introduced into L. mesenteroides using the shuttle vectors pLeuCM and pLeuCM42. To elevate the expression level of ldhL in L. mesenteroides, the nucleotides for pyruvate kinase promoter were fused to ldhL and cloned into above vectors to construct pLC18pkL and pLC42pkL. As results, introduction of pLC42pkL in L. mesenteroides significantly improved both l-LDH activity and l-lactate productivity during fermentation, decreasing the d-/l-lactate ratio. When used as a starter culture for sauerkraut fermentation, recombinant L. mesenteroides harboring pLC42pkL increased l-lactate concentration and decreased d-lactate concentration compared to the wild type strain. We newly developed a recombinant L.mesenteroides which has high l-lactate dehydrogenase activity and applied this strain to minimize the harmful effect of d-lactate during the sauerkraut fermentation. To the best of our knowledge, we demonstrate for the first time the effective use of recombinant Leuconostoc sp. for quality improvement of fermented foods.
    Journal of Bioscience and Bioengineering 10/2015; DOI:10.1016/j.jbiosc.2015.09.007
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown that pyrrhocoricin, a proline-rich antimicrobial peptide (PrAMP), killed sensitive species in a dose-dependent manner by specifically binding to DnaK. Here, on the basis of the finding that DnaK-deficient Escherichia coli strains are susceptible to PrAMPs, we used pyrrhocoricin to investigate internal targets other than DnaK. Using conventional antibiotics (bleomycin, streptomycin, and fosfomycin) that have known modes of action, first, we validated the availability of an assay using a cell-free rapid translation system (RTS), which is an in vitro protein synthesis system based on E. coli lysate, for evaluating inhibition of protein synthesis. We found that, similarly to bleomycin and streptomycin, pyrrhocoricin inhibited GFP synthesis in RTS in a concentration-dependent manner. In addition, blockage of transcription and translation steps in RTS was individually estimated using RT-PCR after gene expression to determine mRNA products and using sodium dodecyl sulfate-polyacrylamide gel electrophoresis to determine the amounts of GFP expressed from purified mRNA, respectively. The results demonstrated that this inhibition of GFP synthesis by pyrrhocoricin did not occur at the transcription step but rather at the translation step, in a manner similar to that of GFP synthesis by streptomycin, an inhibitor of the translation step by causing misreading of tRNA. These results suggest that RTS is a powerful assay system for determining if antimicrobial peptides inhibit protein synthesis and its transcription and/or translation steps. This is the first study to have shown that pyrrhocoricin inhibited protein synthesis by specifically repressing the translation step.
    Journal of Bioscience and Bioengineering 10/2015; DOI:10.1016/j.jbiosc.2015.09.002