Allergology International Journal Impact Factor & Information

Publisher: Nihon Arerugī Gakkai, Wiley

Journal description

Allergology International is the official journal of the Japanese Society of Allergology and publishes original papers dealing with the etiology, diagnosis and treatment of allergic and related diseases. Papers may include the study of methods of controlling allergic reactions, human and animal models of hypersensitivity and other aspects of basic and applied clinical allergy in its broadest sense. The Journal aims to encourage the international exchange of results and encourages authors from all countries to submit papers in the following five categories: Original Articles, Case Reports, Short Communications, Occasional Reviews and Editorials, Letters to the Editor, and Hypothesis.

Current impact factor: 2.46

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 2.457

Additional details

5-year impact 0.00
Cited half-life 4.90
Immediacy index 0.73
Eigenfactor 0.00
Article influence 0.00
Website Allergology International website
Other titles Allergology international (Online), Allergol Int
ISSN 1323-8930
OCLC 45113966
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo for scientific, technical and medicine titles
    • 2 years embargo for humanities and social science titles
  • Conditions
    • Some journals have separate policies, please check with each journal directly
    • On author's personal website, institutional repositories, arXiv, AgEcon, PhilPapers, PubMed Central, RePEc or Social Science Research Network
    • Author's pre-print may not be updated with Publisher's Version/PDF
    • Author's pre-print must acknowledge acceptance for publication
    • On a non-profit server
    • Publisher's version/PDF cannot be used
    • Publisher source must be acknowledged with citation
    • Must link to publisher version with set statement (see policy)
    • If OnlineOpen is available, BBSRC, EPSRC, MRC, NERC and STFC authors, may self-archive after 12 months
    • If OnlineOpen is not available, BBSRC, EPSRC, MRC, NERC and STFC authors, may self-archive after 6 months
    • If OnlineOpen is available, AHRC and ESRC authors, may self-archive after 24 months
    • If OnlineOpen is not available, AHRC and ESRC authors, may self-archive after 12 months
    • Reviewed 18/03/14
    • Please see former John Wiley & Sons and Blackwell Publishing policies for articles published prior to February 2007
  • Classification
    ​ yellow

Publications in this journal

  • Source
    Allergology International 06/2015; 11. DOI:10.1016/j.alit.2015.04.011
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The expression and functional role of CysLT2 receptors in asthma have not been clarified. In this study, we evaluated CysLT2 receptors expression, and effects of CysLT2-and CysLT1/2-receptor antagonists on antigen-induced bronchoconstriction using isolated lung tissues from both asthma and non-asthma subjects.
    Allergology International 06/2015; 17. DOI:10.1016/j.alit.2015.04.008
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Innate lymphoid cells (ILCs) have emerged recently as an important component of the immune system and the cell type that regulates mucosal immune responses and tissue homeostasis. Group 2 ILCs (ILC2s), a subset of ILCs, reside in various tissues and are characterized by their capacity to produce type 2 cytokines and tissue growth factors. These ILC2s play an important role in allergic immune responses by linking signals in the atmospheric environment to the immune system. Fungi are one of the major allergens associated with human asthma, and animal and in vitro models using the fungal allergens have provided significant information toward our understanding of the mechanisms of allergic disease. In mouse models of fungus-induced allergic airway inflammation, IL-33, IL-25, and TSLP are released by airway epithelial cells. Lung ILC2s that respond to these cytokines quickly produce a large quantity of type 2 cytokines, resulting in airway eosinophilia, mucus production, and airway hyperreactivity even in the absence of adaptive immune cells. Evidence also suggests that ILC2s interact with conventional immune cells, such as CD4(+) T cells, and facilitate development of adaptive immune response and persistent airway inflammation. ILC2s are also present in respiratory mucosa in humans. Further investigations into the biology of ILC2s and their roles in the pathophysiology of allergic diseases will provide major conceptual advances in the field and may provide useful information toward development of new therapeutic strategies for patients. Copyright © 2015 Japanese Society of Allergology. Production and hosting by Elsevier B.V. All rights reserved.
    Allergology International 05/2015; 327(3). DOI:10.1016/j.alit.2015.04.004
  • Source
    Allergology International 05/2015; 62. DOI:10.1016/j.alit.2015.04.007