Korean Journal of Physiology and Pharmacology

Journal description

Current impact factor: 1.26

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 1.262
2012 Impact Factor 1
2011 Impact Factor 0.964
2010 Impact Factor 0.476

Impact factor over time

Impact factor
Year

Additional details

5-year impact 0.00
Cited half-life 3.10
Immediacy index 0.13
Eigenfactor 0.00
Article influence 0.00
ISSN 1226-4512

Publications in this journal

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Connexins (Cx) are membrane proteins and monomers for forming gap junction (GJ) channels. Cx46 and Cx50 are also known to function as conductive hemichannels. As part of an ongoing effort to find GJ-specific blocker(s), endocrine disruptors were used to examine their effect on Cx46 hemichannels expressed in Xenopus oocytes. Voltage-dependent gating of Cx46 hemichannels was characterized by slowly activating outward currents and relatively fast inward tail currents. Bisphenol A (BPA, 10 nM) reduced outward currents of Cx46 hemichannels up to ~18% of control, and its effect was reversible (n=5). 4-tert-Octylphenol (OP, 1 µM) reversibly reduced outward hemichannel currents up to ~28% (n=4). However, overall shapes of Cx46 hemichannel current traces (outward and inward currents) were not changed by these drugs. These results suggest that BPA and OP are likely to occupy the pore of Cx46 hemichannels and thus obstruct the ionic fluxes. This finding provides that BPA and OP are potential candidates for GJ channel blockers.
    Korean Journal of Physiology and Pharmacology 01/2015; 19(1):73-9. DOI:10.4196/kjpp.2015.19.1.73
  • [Show abstract] [Hide abstract]
    ABSTRACT: The etiology of periodontal disease is multifactorial. Exogenous stimuli such as bacterial pathogens can interact with toll-like receptors to activate intracellular calcium signaling in gingival epithelium and other tissues. The triggering of calcium signaling induces the secretion of pro-inflammatory cytokines such as interleukin-8 as part of the inflammatory response; however, the exact mechanism of calcium signaling induced by bacterial toxins when gingival epithelial cells are exposed to pathogens is unclear. Here, we investigate calcium signaling induced by bacteria and expression of inflammatory cytokines in human gingival epithelial cells. We found that peptidoglycan, a constituent of gram-positive bacteria and an agonist of toll-like receptor 2, increases intracellular calcium in a concentration-dependent manner. Peptidoglycan-induced calcium signaling was abolished by treatment with blockers of phospholipase C (U73122), inositol 1,4,5-trisphosphate receptors, indicating the release of calcium from intracellular calcium stores. Peptidoglycan-mediated interleukin-8 expression was blocked by U73122 and 1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid tetrakis (acetoxymethyl ester). Moreover, interleukin-8 expression was induced by thapsigargin, a selective inhibitor of the sarco/endoplasmic reticulum calcium ATPase, when thapsigargin was treated alone or co-treated with peptidoglycan. These results suggest that the gram-positive bacterial toxin peptidoglycan induces calcium signaling via the phospholipase C/inositol 1,4,5-trisphosphate pathway, and that increased interleukin-8 expression is mediated by intracellular calcium levels in human gingival epithelial cells.
    Korean Journal of Physiology and Pharmacology 01/2015; 19(1):51-7. DOI:10.4196/kjpp.2015.19.1.51
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: This study was aimed to observe that extremely low frequency magnetic field (ELF-MF) may be relevant to changes of major neurotransmitters in rat brain. After the exposure to ELF-MF (60 Hz, 2.0 mT) for 2 or 5 days, we measured the levels of biogenic amines and their metabolites, amino acid neurotransmitters and nitric oxide (NO) in the cortex, striatum, thalamus, cerebellum and hippocampus. The exposure of ELF-MF for 2 or 5 days produced significant differences in norepinephrine and vanillyl mandelic acid in the striatum, thalamus, cerebellum and hippocampus. Significant increases in the levels of serotonin and 5-hydroxyindoleacetic acid were also observed in the striatum, thalamus or hippocampus. ELF-MF significantly increased the concentration of dopamine in the thalamus. ELF-MF tended to increase the levels of amino acid neurotransmitters such as glutamine, glycine and γ -aminobutyric acid in the striatum and thalamus, whereas it decreased the levels in the cortex, cerebellum and hippocampus. ELF-MF significantly increased NO concentration in the striatum, thalamus and hippocampus. The present study has demonstrated that exposure to ELF-MFs may evoke the changes in the levels of biogenic amines, amino acid and NO in the brain although the extent and property vary with the brain areas. However, the mechanisms remain further to be characterized.
    Korean Journal of Physiology and Pharmacology 01/2015; 19(1):15-20. DOI:10.4196/kjpp.2015.19.1.15
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the sweating response during passive heating (partial submersion up to the umbilical line in 42±0.5℃ water, 30 min) after summer and winter seasonal acclimatization (SA). Testing was performed in July during the summer, 2011 [summer-SA; temp, 25.6±1.8℃; relative humidity (RH), 82.1±8.2%] and in January during the winter, 2012 (winter-SA; temp, -2.7±2.9℃; RH, 65.0±13.1%) in Cheonan (126°52'N, 33.38'E), Republic of Korea. All experiments were carried out in an automated climatic chamber (temp, 25.0±0.5℃: RH, 60.0±3.0%). Fifteen healthy men (age, 23.4±2.5 years; height, 175.0±5.9 cm; weight, 65.3±6.1 kg) participated in the study. Local sweat onset time was delayed during winter-SA compared to that after summer-SA (p< 0.001). Local sweat volume, whole body sweat volume, and evaporative loss volume decreased significantly after winter-SA compared to those after summer-SA (p<0.001). Changes in basal metabolic rate increased significantly after winter-SA (p< 0.001), and tympanic temperature and mean body temperature were significantly lower after summer-SA (p<0.05). In conclusion, central sudomotor acitivity becomes sensitive to summer-SA and blunt to winter-SA in Rebubic of Korea. These results suggest that the body adjusts its temperature by economically controlling the sweating rate but does not lower the thermal dissipation rate through a more effective evaporation scheme after summer-SA than that after winter-SA.
    Korean Journal of Physiology and Pharmacology 01/2015; 19(1):9-14. DOI:10.4196/kjpp.2015.19.1.9
  • [Show abstract] [Hide abstract]
    ABSTRACT: Retinyl palmitate (RP)-loaded pectinate micro- and nano-particles (PMP and PNP) were designed for stabilization of RP that is widely used as an anti-wrinkle agent in anti-aging cosmeceuticals. PMP/PNP were prepared with an ionotropic gelation method, and anti-oxidative activity of the particles was measured with a DPPH assay. The stability of RP in the particles along with pectin gel and ethanolic solution was then evaluated. In vitro release and skin permeation studies were performed using Franz diffusion cells. Distribution of RP in each skin tissue (stratum corneum, epidermis, and dermis) was also determined. PMP and PNP could be prepared with mean particle size diameters of 593~843 μm (PMP) and 530 nm (i.e., 0.53 μm, PNP). Anti-oxidative activity of PNP was greater than PMP due largely to larger surface area available for PNP. The stability of RP in PMP and PNP was similar but much greater than RP in pectin bulk gels and ethanolic solution. PMP and PNP showed the abilities to constantly release RP and it could be permeated across the model artificial membrane and rat whole skin. RP was serially deposited throughout the skin layers. This study implies RP loaded PMP and PNP are expected to be advantageous for improved anti-wrinkle effects.
    Korean Journal of Physiology and Pharmacology 01/2015; 19(1):59-64. DOI:10.4196/kjpp.2015.19.1.59
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Our previous study has shown berberine prevents damage to the intestinal mucosal barrier during early phase of sepsis in rat through mechanisms independent of the NOD-like receptors signaling pathway. In this study, we explored the regulatory effects of berberine on Toll-like receptors during the intestinal mucosal damaging process in rats. Male Sprague-Dawlay (SD) rats were treated with berberine for 5 d before undergoing cecal ligation and puncture (CLP) to induce polymicrobial sepsis. The expression of Toll-like receptor 2 (TLR 2), TLR 4, TLR 9, the activity of nuclear factor-kappa B (NF-κB), the levels of selected cytokines and chemokines, percentage of cell death in intestinal epithelial cells, and mucosal permeability were investigated at 0, 2, 6, 12 and 24 h after CLP. Results showed that the tumor necrosis factor-α (TNF-α ) and interleukin-6 (IL-6) level were significantly lower in berberine-treated rats compared to the control animals. Conversely, the expression level of tight junction proteins, percentage of cell death in intestinal epithelial cells and the mucosal permeability were significantly higher in berberine-treated rats. The mRNA expression of TLR 2, TLR 4, and TLR 9 were significantly affected by berberine treatment. Our results indicate that pretreatment with berberine attenuates tissue injury and protects the intestinal mucosal barrier in early phase of sepsis and this may possibly have been mediated through the TLRs pathway.
    Korean Journal of Physiology and Pharmacology 01/2015; 19(1):1-7. DOI:10.4196/kjpp.2015.19.1.1
  • [Show abstract] [Hide abstract]
    ABSTRACT: Asthma is a chronic inflammatory disease characterized by airway hyperresponsiveness (AHR) and reversible airway obstruction. Methacholine (MCh) is widely used in broncho-provocation test to evaluate airway resistance. For experimental investigation, ovalbumin-induced sensitization is frequently used in rodents (Ova-asthma). However, albeit the inflammatory histology and AHR in vivo, it remains unclear whether the MCh sensitivity of airway smooth muscle isolated from Ova-asthma is persistently changed. In this study, the contractions of airways in precision-cut lung slices (PCLS) from control, Ova-asthma, and IL-13 overexpressed transgenic mice (IL-13TG) were compared by analyzing the airway lumen space (AW). The airway resistance in vivo was measured using plethysmograph. AHR and increased inflammatory cells in BAL fluid were confirmed in Ova-asthma and IL-13TG mice. In the PCLS from all three groups, MCh concentration-dependent narrowing of airway lumen (ΔAW) was observed. In contrast to the AHR in vivo, the EC50 of MCh for ΔAW from Ova-asthma and IL-13TG were not different from control, indicating unchanged sensitivity to MCh. Although the AW recovery upon MCh-washout showed sluggish tendency in Ova-asthma, the change was also statistically insignificant. Membrane depolarization-induced ΔAW by 60 mM K(+) (60K-contraction) was larger in IL-13TG than control, whereas 60K-contraction of Ova-asthma was unaffected. Furthermore, serotonin-induced ΔAW of Ova-asthma was smaller than control and IL-13TG. Taken together, the AHR in Ova-asthma and IL-13TG are not reflected in the contractility of isolated airways from PCLS. The AHR of the model animals seems to require intrinsic agonists or inflammatory microenvironment that is washable during tissue preparation.
    Korean Journal of Physiology and Pharmacology 01/2015; 19(1):65-71. DOI:10.4196/kjpp.2015.19.1.65
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Fucoidan, a fucose-rich sulfated polysaccharide derived from brown seaweed in the class Phaeophyceae, has been widely studied for its possible health benefits. However, the potential of fucoidan as a possible treatment for hyperpigmentation is not fully understood. This study investigated the effects of fucoidan on melanogenesis and related signaling pathways using Mel-Ab cells. Fucoidan significantly decreased melanin content. While fucoidan treatment decreased tyrosinase activity, it did not do so directly. Western blot analysis indicated that fucoidan downregulated microphthalmia-associated transcription factor and reduced tyrosinase protein expression. Further investigation showed that fucoidan activated the extracellular signal-regulated kinase (ERK) pathway, suggesting a possible mechanism for the inhibition of melanin synthesis. Treatment with PD98059, a specific ERK inhibitor, resulted in the recovery of melanin production. Taken together, these findings suggest that fucoidan inhibits melanogenesis via ERK phosphorylation.
    Korean Journal of Physiology and Pharmacology 01/2015; 19(1):29-34. DOI:10.4196/kjpp.2015.19.1.29
  • [Show abstract] [Hide abstract]
    ABSTRACT: It has been shown that the extracts including eupatilin and quercetin-3-β-D-glucuronopyranoside had mucoprotective effects on the esophagus and stomach through their antioxidant activities. This study was designed to investigate the anti-inflammatory effect of these flavonoid compounds in an animal model of inflammatory bowel disease induced by 2,4,6-trinitrobenzene sulfonic acid. Experimental colitis was induced by intracolonic administration of 2,4,6-trinitrobenzene sulfonic acid. Extracts including eupatilin or quercetin-3-β-D-glucuronopyranoside were orally administered to animals 48, 24, and 1 h prior to the induction of colitis and then again 24 h later. The animals were sacrificed 48 h after by 2,4,6-trinitrobenzene sulfonic acid treatment and the macroscopic appearance of the colonic lesions was scored in a blinded manner on a scale of 1 to 10. The inflammatory response to colitis induction was assessed by measuring myeloperoxidase activity, nitric oxide production, tumor necrosis factor-α expression, total glutathione levels, and malondialdehyde concentrations in the colon. The results indicated that extracts including eupatilin and extracts including quercetin-3-β-D-glucuronopyranoside dose-dependently improved the morphology of the lesions induced by 2,4,6-trinitrobenzene sulfonic acid and reduced the ulcer index accordingly. In addition, rats receiving extracts including eupatilin and extracts including quercetin-3-β-D-glucuronopyranoside showed significantly decreased levels of mucosal myeloperoxidase activity, nitric oxide production, tumor necrosis factor-α expression, and malondialdehyde levels, and increased total glutathione levels. Extracts including eupatilin and extracts including quercetin-3-β-D-glucuronopyranoside ameliorated the inflammatory response and colonic injury in acute colitis by decreasing oxidative stress and neutrophil activation. Extracts including eupatilin and extracts including quercetin-3-β-D-glucuronopyranoside may inhibit acute colitis.
    Korean Journal of Physiology and Pharmacology 01/2015; 19(1):43-50. DOI:10.4196/kjpp.2015.19.1.43
  • [Show abstract] [Hide abstract]
    ABSTRACT: The anti-inflammatory, antioxidant, and antimicrobial properties of artemisinin derived from water, methanol, ethanol, or acetone extracts of Artemisia annua L. were evaluated. All 4 artemisinin-containing extracts had anti-inflammatory effects. Of these, the acetone extract had the greatest inhibitory effect on lipopolysaccharide-induced nitric oxide (NO), prostaglandin E2 (PGE2), and proinflammatory cytokine (IL-1β , IL-6, and IL-10) production. Antioxidant activity evaluations revealed that the ethanol extract had the highest free radical scavenging activity, (91.0±3.2%), similar to α-tocopherol (99.9%). The extracts had antimicrobial activity against the periodontopathic microorganisms Aggregatibacter actinomycetemcomitans, Fusobacterium nucleatum subsp. animalis, Fusobacterium nucleatum subsp. polymorphum, and Prevotella intermedia. This study shows that Artemisia annua L. extracts contain anti-inflammatory, antioxidant, and antimicrobial substances and should be considered for use in pharmaceutical products for the treatment of dental diseases.
    Korean Journal of Physiology and Pharmacology 01/2015; 19(1):21-7. DOI:10.4196/kjpp.2015.19.1.21
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Phasic and tonic γ-aminobutyric acidA (GABAA) receptor-mediated inhibition critically regulate neuronal information processing. As these two inhibitory modalities have distinctive features in their receptor composition, subcellular localization of receptors, and the timing of receptor activation, it has been thought that they might exert distinct roles, if not completely separable, in the regulation of neuronal function. Inhibition should be maintained and regulated depending on changes in network activity, since maintenance of excitation-inhibition balance is essential for proper functioning of the nervous system. In the present study, we investigated how phasic and tonic inhibition are maintained and regulated by different signaling cascades. Inhibitory postsynaptic currents were measured as either electrically evoked events or spontaneous events to investigate regulation of phasic inhibition in layer 2/3 pyramidal neurons of the rat visual cortex. Tonic inhibition was assessed as changes in holding currents by the application of the GABAA receptor blocker bicuculline. Basal tone of phasic inhibition was maintained by intracellular Ca(2+) and Ca(2+)/calmodulin-dependent protein kinase II (CaMKII). However, maintenance of tonic inhibition relied on protein kinase A activity. Depolarization of membrane potential (5 min of 0 mV holding) potentiated phasic inhibition via Ca(2+) and CaMKII but tonic inhibition was not affected. Thus, phasic and tonic inhibition seem to be independently maintained and regulated by different signaling cascades in the same cell. These results suggest that neuromodulatory signals might differentially regulate phasic and tonic inhibition in response to changes in brain states.
    Korean Journal of Physiology and Pharmacology 12/2014; 18(6):517-24. DOI:10.4196/kjpp.2014.18.6.517
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We investigated the question of whether cholesterol catabolite can influence expression of inflammatory cytokines via Toll-like receptors (TLR) in monocytic cells. Treatment of THP-1 monocytic cells with 27-hydroxycholesterol (27OHChol) resulted in induction of gene transcription of TLR6 and elevated level of cell surface TLR6. Addition of FSL-1, a TLR6 agonist, to 27OHChol-treated cells resulted in transcription of the IL-1α gene and enhanced secretion of the corresponding gene product. However, cholesterol did not affect TLR6 expression, and addition of FSL-1 to cholesterol-treated cells did not induce expression of IL-1α. Using pharmacological inhibitors, we investigated molecular mechanisms underlying the expression of TLR6 and IL-1α. Treatment with Akt inhibitor IV or U0126 resulted in significantly attenuated expression of TLR6 and IL-1α induced by 27OHChol and 27OHChol plus FSL-1, respectively. In addition, treatment with LY294002, SB202190, or SP600125 resulted in significantly attenuated secretion of IL-1α. These results indicate that 27OHChol can induce inflammation by augmentation of TLR6-mediated production of IL-1α in monocytic cells via multiple signaling pathways.
    Korean Journal of Physiology and Pharmacology 12/2014; 18(6):475-80. DOI:10.4196/kjpp.2014.18.6.475
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transient receptor potential vanilloid subtype 1 (TRPV1) was originally found in sensory neurons. Recently, it has been reported that TRPV1 is expressed in salivary gland epithelial cells (SGEC). However, the physiological role of TRPV1 in salivary secretion remains to be elucidated. We found that TRPV1 is expressed in mouse and human submandibular glands (SMG) and HSG cells, originated from human submandibular gland ducts at both mRNA and protein levels. However, capsaicin (CAP), TRPV1 agonist, had little effect on intracellular free calcium concentration ([Ca(2+)]i) in these cells, although carbachol consistently increased [Ca(2+)]i. Exposure of cells to high temperature (>43℃) or acidic bath solution (pH5.4) did not increase [Ca(2+)]i, either. We further examined the role of TRPV1 in salivary secretion using TRPV1 knock-out mice. There was no significant difference in the pilocarpine (PILO)-induced salivary flow rate between wild-type and TRPV1 knock-out mice. Saliva flow rate also showed insignificant change in the mice treated with PILO plus CAP compared with that in mice treated with PILO alone. Taken together, our results suggest that although TRPV1 is expressed in SGEC, it appears not to play any direct roles in saliva secretion via transcellular pathway.
    Korean Journal of Physiology and Pharmacology 12/2014; 18(6):525-30. DOI:10.4196/kjpp.2014.18.6.525
  • [Show abstract] [Hide abstract]
    ABSTRACT: At central synapses, activity-dependent synaptic plasticity has a crucial role in information processing, storage, learning, and memory under both physiological and pathological conditions. One widely accepted model of learning mechanism and information processing in the brain is Hebbian Plasticity: long-term potentiation (LTP) and long-term depression (LTD). LTP and LTD are respectively activity-dependent enhancement and reduction in the efficacy of the synapses, which are rapid and synapse-specific processes. A number of recent studies have a strong focal point on the critical importance of another distinct form of synaptic plasticity, non-Hebbian plasticity. Non-Hebbian plasticity dynamically adjusts synaptic strength to maintain stability. This process may be very slow and occur cell-widely. By putting them all together, this mini review defines an important conceptual difference between Hebbian and non-Hebbian plasticity.
    Korean Journal of Physiology and Pharmacology 12/2014; 18(6):457-60. DOI:10.4196/kjpp.2014.18.6.457
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Radiation therapy for variety of human solid tumors utilizes mechanism of cell death after DNA damage caused by radiation. In response to DNA damage, cytochrome c was released from mitochondria by activation of pro-apoptotic Bcl-2 family proteins, and then elicits massive Ca(2+) release from the ER that lead to cell death. It was also suggested that irradiation may cause the deregulation of Ca(2+) homeostasis and trigger programmed cell death and regulate death specific enzymes. Thus, in this study, we investigated how cellular Ca(2+) metabolism in RKO cells, in comparison to radiation-resistant A549 cells, was altered by gamma (γ)-irradiation. In irradiated RKO cells, Ca(2+) influx via activation of NCX reverse mode was enhanced and a decline of [Ca(2+)]i via forward mode was accelerated. The amount of Ca(2+) released from the ER in RKO cells by the activation of IP3 receptor was also enhanced by irradiation. An increase in [Ca(2+)]i via SOCI was enhanced in irradiated RKO cells, while that in A549 cells was depressed. These results suggest that γ-irradiation elicits enhancement of cellular Ca(2+) metabolism in radiation-sensitive RKO cells yielding programmed cell death.
    Korean Journal of Physiology and Pharmacology 12/2014; 18(6):509-16. DOI:10.4196/kjpp.2014.18.6.509
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Spontaneous myometrial contraction (SMC) in pregnant uterus is greatly related with gestational age and growing in frequency and amplitude toward the end of gestation to initiate labor. But, an accurate mechanism has not been elucidated. In human and rat uterus, all TRPCs except TRPC2 are expressed in pregnant myometrium and among them, TRPC4 are predominant throughout gestation, suggesting a possible role in regulation of SMC. Therefore, we investigated whether the TRP channel may be involved SMC evoked by mechanical stretch in pregnant myometrial strips of rat using isometric tension measurement and patch-clamp technique. In the present results, hypoosmotic cell swelling activated a potent outward rectifying current in G protein-dependent manner in rat pregnant myocyte. The current was significantly potentiated by 1µM lanthanides (a potent TRPC4/5 stimulator) and suppressed by 10µM 2-APB (TRPC4-7 inhibitor). In addition, in isometric tension experiment, SMC which was evoked by passive stretch was greatly potentiated by lanthanide (1µM) and suppressed by 2-APB (10µM), suggesting a possible involvement of TRPC4/5 channel in regulation of SMC in pregnant myometrium. These results provide a possible cellular mechanism for regulation of SMC during pregnancy and provide basic information for developing a new agent for treatment of premature labor.
    Korean Journal of Physiology and Pharmacology 12/2014; 18(6):503-8. DOI:10.4196/kjpp.2014.18.6.503