Biomarker insights Journal Impact Factor & Information

Publisher: Libertas Academica

Journal description

Biomarker Insights is a peer-reviewed, open-access research journal where those engaged in biomarker research can turn for rapid communication of the latest advances in the application of biomarkers toward the discovery of new knowledge, and toward the clinical translation of that knowledge to increase the efficacy of practicing clinicians.

Current impact factor: 0.00

Impact Factor Rankings

Additional details

5-year impact 0.00
Cited half-life 0.00
Immediacy index 0.00
Eigenfactor 0.00
Article influence 0.00
Website Biomarker Insights website
ISSN 1177-2719
OCLC 71909732
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Libertas Academica

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • On institutional repository or funder's designated repository
    • Author must be acknowledged
    • Reuse or distribution is made with the same conditions and permissions
    • Creative Commons Attribution Non-Commercial License 3.0
    • Creative Commons Attribution License 3.0 only upon request
    • Publisher's version/PDF may be used
    • On a non-profit server
    • Publisher last contacted on 04/07/2014
  • Classification

Publications in this journal

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: MicroRNA-155 (miR-155) is a multifunctional molecule involved in both normal and malignant hematopoiesis. It has been found to be involved in the pathogenesis of many different hematological malignancies with either an oncogenic or a tumor-repressor effect, depending on the nature of the cell and the type of malignancy. In particular, it has been strongly implicated in the causation of diffuse large B-cell lymphomas. This review focuses on the molecular interactions of miR-155, its oncogenic mechanisms, and its potential as an effective therapeutic target for the associated malignancies.
    Biomarker insights 11/2015; 10:95-102. DOI:10.4137/BMI.S27676

  • Biomarker insights 11/2015; DOI:10.4137/BMI.S34403
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Dysregulation of the PI3K/AKT/mammalian target of rapamycin (mTOR) pathway could contribute to the pathogenesis of autism spectrum disorders. In this study, phosphorylated Akt concentration was measured in 37 autistic children and 12, gender and age similar neurotypical, controls using an enzyme-linked immunosorbent assay. Akt levels were compared to biomarkers known to be associated with epidermal growth factor receptor (EGFR) and c-Met (hepatocyte growth factor (HGF) receptor) pathways and severity levels of 19 autism-related symptoms. We found phosphorylated Akt levels significantly lower in autistic children and low Akt levels correlated with high EGFR and HGF and low gamma-aminobutyric acid, but not other biomarkers. Low Akt levels also correlated significantly with increased severity of receptive language, conversational language, hypotonia, rocking and pacing, and stimming, These results suggest a relationship between decreased phosphorylated Akt and selected symptom severity in autistic children and support the suggestion that the AKT pathways may be associated with the etiology of autism.
    Biomarker insights 10/2015; 10:89-94. DOI:10.4137/BMI.S21946
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Tyrosine kinases (TKs) play a significant role in cancerogenesis and cancer cell function. Initial developments in this field go back to the early 80s, but the success story really started with the selective BCR-ABL inhibitor, imatinib. Owing to the cancer-driving role of BCR-ABL in chronic myeloid leukemia (CML), excellent response rates lead to fast FDA approval in both the first and second treatments of CML patients. Since then, numerous TKs were identified. TK inhibitors have been developed accordingly, and technology to test for ideal drug-target interactions has profoundly improved. By now, medical oncologists and hematologists struggle to have a pool of potential TK inhibitors, where the most efficient one could be picked out to treat a specific cancer patient, which might also help overcome the occurring resistance mechanisms against TK inhibitors. Whether disease eradication can be achieved via single or sequential TK inhibitor treatment(s) needs to be tested in the present and in the future.
    Biomarker insights 09/2015; 10(Suppl 3):29-31. DOI:10.4137/BMI.S22432
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interstitial lung disease (ILD) is frequently associated with collagen disease. It is then designated as collagen vascular disease-associated ILD (CVD-ILD), and influences patients' prognosis. The prognosis of acute-onset diffuse ILD (AoDILD) occurring in patients with collagen disease is quite poor. Here, we report our investigation of auto-antibody (Ab) profiles to determine whether they may be useful in diagnosing CVD-ILD or AoDILD in collagen disease. Auto-Ab profiles were analyzed using the Lambda Array Beads Multi-Analyte System, granulocyte immunofluorescence test, Proto-Array Human Protein Microarray, AlphaScreen assay, and glutathione S-transferase capture enzyme-linked immunosorbent assay in 34 patients with rheumatoid arthritis (RA) with or without CVD-ILD and in 15 patients with collagen disease with AoDILD. The average anti-major histocompatibility complex class I-related chain A (MICA) Ab levels were higher in RA patients with CVD-ILD than in those without (P = 0.0013). The ratio of the average anti-MICA Ab level to the average anti-human leukocyte antigen class I Ab level (ie, MICA/Class I) was significantly higher in RA patients with CVD-ILD compared with those without (P = 4.47 × 10(-5)). To the best of our knowledge, this is the first report of auto-Ab profiles in CVD-ILD. The MICA/Class I ratio could be a better marker for diagnosing CVD-ILD than KL-6 (Krebs von den lungen-6).
    Biomarker insights 09/2015; 10:63-73. DOI:10.4137/BMI.S28209
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Targeting tyrosine kinases represents a highly specific treatment approach for different malignancies. This also includes non-Hodgkin lymphoma since it is well known that these enzymes are frequently involved in the lymphomagenesis. Hereby, tyrosine kinases might either be dysregulated intrinsically or be activated within signal transduction pathways leading to tumor survival and growth. Among others, Bruton's tyrosine kinase (Btk) is of particular interest as a potential therapeutic target. Btk is stimulated by B-cell receptor signaling and activates different transcription factors such as nuclear factor κB. The Btk inhibitor ibrutinib has been approved for the treatment of chronic lymphocytic leukemia and mantle-cell lymphoma recently. Numerous clinical trials evaluating this agent in different combinations (eg, with rituximab or classical chemotherapeutic agents) as a treatment option for aggressive and indolent lymphoma are under way. Here, we summarize the role of tyrosine kinase inhibitors in the treatment of indolent and other non-Hodgkin lymphomas (eg, mantle-cell lymphoma).
    Biomarker insights 09/2015; 10(Suppl 3):15-23. DOI:10.4137/BMI.S22434
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recognizing an increasing need for biomarkers that predict clinical outcomes in type 1 diabetes (T1D), JDRF, a major funding organization for T1D research, recently instituted the Core for Assay Validation (CAV) to accelerate the translation of promising assays from discovery to clinical implementation via a process of coordinated evaluation of biomarkers. In this model, the CAV facilitates the validation of candidate assay methods as well as qualification of proposed biomarkers for a specific clinical use in well-characterized patients. We describe here a CAV-driven pilot project aimed at identifying biomarkers that predict the rate of decline in beta cell function after diagnosis. In a formalized pipeline, candidate assays are first assessed for general rationale, technical precision, and biological associations in a cross-sectional cohort. Those with the most favorable characteristics are then applied to placebo arm subjects of T1D intervention trials to assess their predictive correlation with beta cell function. We outline a go/no-go process for advancing candidate assays in a defined qualification pipeline that also allows for the discovery of novel predictive biomarker combinations. This strategy could be a model for other collaborative biomarker development efforts in and beyond T1D.
    Biomarker insights 09/2015; 10(Suppl 4):19. DOI:10.4137/BMI.S29697
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Molecular analysis of sputum can help diagnose lung cancer. We have demonstrated that Lung Flute can be used to collect sputum from individuals who cannot spontaneously expectorate sputum. The objective of this study is to further evaluate the performance of the Lung Flute by comparing the characteristics of parallel samples collected with and without the Lung Flute and the usefulness for diagnosis of lung cancer. Fifty-six early-stage lung cancer patients (40 current smokers and 16 former smokers) and 73 cancer-free individuals (52 current smokers and 21 former smokers) were instructed to spontaneously cough and use Lung Flute for sputum sampling. Sputum cytology and polymerase chain reaction analysis of three miRNAs (miRs-21, 31, and 210) were performed in the specimens. All 92 current smokers and 11 (28.7%) of 37 former smokers spontaneously expectorated sputum and also produced sputum when using the Lung Flute. Twenty-seven former smokers (70.3%) who could not spontaneously expectorate sputum, however, were able to produce sputum when using the Lung Flute. The specimens were of low respiratory origin without contamination from other sources, eg, saliva. There was no difference of sputum volume and cell populations, diagnostic efficiency of cytology, and analysis of the miRNAs in the specimens collected by the two approaches. Analysis of the sputum miRNAs produced 83.93% sensitivity and 87.67% specificity for identifying lung cancer. Therefore, sputum collected by the Lung Flute has comparable features as spontaneously expectorated sputum. Using the Lung Flute enables former smokers who cannot spontaneously expectorate to provide adequate sputum to improve sputum collection for lung cancer diagnosis.
    Biomarker insights 08/2015; 10:55-61. DOI:10.4137/BMI.S26883
  • Source
    Jacot · Yang Gao ·
    [Show abstract] [Hide abstract]
    ABSTRACT: Synthetic patches and fixed grafts currently used in the repair of congenital heart defects are nonliving, noncontractile, and not electrically responsive, leading to increased risk of complication, reoperation, and sudden cardiac death. Studies suggest that tissue-engineered patches made from living, functional cells could grow with the patient, facilitate healing, and help recover cardiac function. In this paper, we review the research into possible sources of cardiomyocytes and other cardiac cells, including embryonic stem cells, induced pluripotent stem cells, mesenchymal stem cells, adipose-derived stem cells, umbilical cord blood cells, amniotic fluid-derived stem cells, and cardiac progenitor cells. Each cell source has advantages, but also has technical hurdles to overcome, including heterogeneity, functional maturity, immunogenicity, and pathogenicity. Additionally, biomaterials used as patch materials will need to attract and support desired cells and induce minimal immune responses.
    Biomarker insights 08/2015; 10(Suppl 1):139. DOI:10.4137/BMI.S20058