Applied Bionics and Biomechanics Journal Impact Factor & Information

Publisher: IOS Press

Journal description

Applied Bionics and Biomechanics is an international, peer reviewed journal of advanced technological developments based on the science of biological systems. The Journal is aimed at researchers and practitioners in the fields of biomechanics, bioengineering and synthetic biological systems, biomedical engineering, biomimetics, cybernetics and robotics; developers, manufacturers and distributors of applied bionic technology products; and public policy planners and administrators in the areas of technology and health. While artificial body parts and related devices (both implantable and extracorporeal) are a strong focus, other applications of synthetic bionic systems also fall within the scope of the journal, particularly those that are medically-oriented. Issues of public policy relating to developments in bionics, as well as basic research underlying this emerging science, are within the Journal's scope, provided basic research is accompanied by well-reasoned extrapolation and discussion of potential practical implications for advancing bionics technologies.

Current impact factor: 0.47

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 0.47
2012 Impact Factor 0.483

Additional details

5-year impact 0.00
Cited half-life 3.60
Immediacy index 0.12
Eigenfactor 0.00
Article influence 0.00
Website Applied Bionics and Biomechanics website
ISSN 1176-2322
OCLC 71284562
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

IOS Press

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • On author's personal website, institutional website or funder's website, including PubMed Central
    • Non-commercial use only
    • Publisher copyright and source must be acknowledged
    • Author's version can be used
    • Publisher's pdf can be used on institutional website, company website or funding agency website for a fee
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to increase the workspace and the carrying capacity of biomimetic robotics hip joint, a novel biomimetic robotics hip joint was developed. The biomimetic robotics hip joint is mainly composed of a moving platform, frame, and 3-RRR orthogonal spherical parallel mechanism branched chains, and has the characteristics of compact structure, large bearing capacity, high positioning accuracy, and good controllability. The functions of the biomimetic robotics hip joint are introduced, such as the technical parameters, the structure and the driving mode. The biomimetic robotics hip joint model of the robot is established, the kinematics equation is described, and then the dynamics are analyzed and simulated with ADAMS software. The proposed analysis methodology can be provided a theoretical base for biomimetic robotics hip joint of the servo motor selection and structural design. The designed hip joint can be applied in serial and parallel robots or any other mechanisms.
    Applied Bionics and Biomechanics 01/2015; 2015:1-8. DOI:10.1155/2015/145040
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective. The purpose of the present work was to assess the validity of a six-degrees-of-freedom gait analysis model based on the ISB recommendation on definitions of joint coordinate systems (ISB 6DOF) through a quantitative comparison with the Helen Hays model (HH) and repeatability assessment. Methods. Four healthy subjects were analysed with both marker sets: an HH marker set and four marker clusters in ISB 6DOF. A navigated pointer was used to indicate the anatomical landmark position in the cluster reference system according to the ISB recommendation. Three gait cycles were selected from the data collected simultaneously for the two marker sets. Results. Two protocols showed good intertrial repeatability, which apart from pelvic rotation did not exceed 2°. The greatest differences between protocols were observed in the transverse plane as well as for knee angles. Knee internal/external rotation revealed the lowest subject-to-subject and interprotocol repeatability and inconsistent patterns for both protocols. Knee range of movement in transverse plane was overestimated for the HH set (the mean is 34°), which could indicate the cross-talk effect. Conclusions. The ISB 6DOF anatomically based protocol enabled full 3D kinematic description of joints according to the current standard with clinically acceptable intertrial repeatability and minimal equipment requirements.
    Applied Bionics and Biomechanics 01/2015; 2015:1-9. DOI:10.1155/2015/503713
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to reduce the failure probability of rubber sealing rings in reciprocating dynamic seal, a new structure of sealing ring based on bionics was designed. The biomimetic ring has three concave ridges and convex bulges on each side which are very similar to earthworms. Bulges were circularly designed and sealing performances of the biomimetic ring in both static seal and dynamic seal were simulated by FEM. In addition, effects of precompression, medium pressure, speed, friction coefficient, and material parameters on sealing performances were discussed. The results show that von Mises stress of the biomimetic sealing ring distributed symmetrically in no-pressure static sealing. The maximum von Mises stress appears on the second bulge of the inner side. High contact stress concentrates on left bulges. Von Mises stress distribution becomes uneven under medium pressure. Both von Mises stress and contact stress increase when precompression, medium pressure, and rubber hardness increase in static sealing. Biomimetic ring can avoid rolling and distortion in reciprocating dynamic seal, and its working life is much longer than O-ring and rectangular ring. The maximum von Mises stress and contact stress increase with the precompression, medium pressure, rubber hardness, and friction coefficient in reciprocating dynamic seal.
    Applied Bionics and Biomechanics 01/2015; 2015:1-11. DOI:10.1155/2015/358417
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper looks at the effects of radiative heat transfer on the peristaltic transport of a Sisko fluid in an asymmetric channel with nonuniform wall temperatures. Adopting the lubrication theory, highly nonlinear coupled governing equations involving power law index as an exponent have been linearized and perturbation solutions are obtained about the Sisko fluid parameter. Analytical solutions for the stream function, axial pressure gradient, axial velocity, skin friction, and Nusselt number are derived for three different cases (i.e., shear thinning fluid, viscous fluid, and shear thickening fluid). The effects of Grashof number, radiation parameter, and other configuration parameters on pumping, trapping, temperature, Nusselt number, and skin friction have been examined in detail. A good agreement has been found for the case of viscous fluid with existing results.
    Applied Bionics and Biomechanics 01/2015; 2015:1-9. DOI:10.1155/2015/283892
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on the methodology of developing compliant, half-circular, and composite robot legs with designable stiffness. First, force-displacement experiments on flat cantilever composites made by one or multifiberglass cloths are executed. By mapping the cantilever mechanics to the virtual spring model, the equivalent elastic moduli of the composites can be derived. Next, by using the model that links the curved beam mechanics back to the virtual spring, the resultant stiffness of the composite in a half-circular shape can be estimated without going through intensive experimental tryouts. The overall methodology has been experimentally validated, and the fabricated composites were used on a hexapod robot to perform walking and leaping behaviors.
    Applied Bionics and Biomechanics 01/2015; 2015:1-14. DOI:10.1155/2015/754832
  • [Show abstract] [Hide abstract]
    ABSTRACT: An analysis of blood flow through a tapered artery with stenosis and dilatation has been carried out where the blood is treated as incompressible Herschel-Bulkley fluid. A comparison between numerical values and analytical values of pressure gradient at the midpoint of stenotic region shows that the analytical expression for pressure gradient works well for the values of yield stress till 2.4. The wall shear stress and flow resistance increase significantly with axial distance and the increase is more in the case of converging tapered artery. A comparison study of velocity profiles, wall shear stress, and flow resistance for Newtonian, power law, Bingham-plastic, and Herschel-Bulkley fluids shows that the variation is greater for Herschel-Bulkley fluid than the other fluids. The obtained velocity profiles have been compared with the experimental data and it is observed that blood behaves like a Herschel-Bulkley fluid rather than power law, Bingham, and Newtonian fluids. It is observed that, in the case of a tapered stenosed tube, the streamline pattern follows a convex pattern when we move from to and it follows a concave pattern when we move from to . Further, it is of opposite behaviour in the case of a tapered dilatation tube which forms new information that is, for the first time, added to the literature.
    Applied Bionics and Biomechanics 01/2015; 2015:1-12. DOI:10.1155/2015/406195
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background. Cranial sutures are deformable joints between the bones of the skull, bridged by collagen fibres. They function to hold the bones of the skull together while allowing for mechanical stress transmission and deformation. Objective. The aim of this study is to investigate how cranial suture morphology, suture material property, and the arrangement of sutural collagen fibres influence the dynamic responses of the suture and surrounding bone under impulsive loads. Methods. An idealized bone-suture-bone complex was analyzed using a two-dimensional finite element model. A uniform impulsive loading was applied to the complex. Outcome variables of von Mises stress and strain energy were evaluated to characterize the sutures’ biomechanical behavior. Results. Parametric studies revealed that the suture strain energy and the patterns of Mises stress in both the suture and surrounding bone were strongly dependent on the suture morphologies. Conclusions. It was concluded that the higher order hierarchical suture morphology, lower suture elastic modulus, and the better collagen fiber orientation must benefit the stress attenuation and energy absorption.
    Applied Bionics and Biomechanics 01/2015; 2015:1-11. DOI:10.1155/2015/596843
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background. Compliance mismatch is a negative factor and it needs to be considered in arterial bypass grafting. Objective. A computational model was employed to investigate the effects of arterial compliance mismatch on blood flow, wall stress, and deformation. Methods. The unsteady blood flow was assumed to be laminar, Newtonian, viscous, and incompressible. The vessel wall was assumed to be linear elastic, isotropic, and incompressible. The fluid-wall interaction scheme was constructed using the finite element method. Results. The results show that there are identical wall shear stress waveforms, wall stress, and strain waveforms at different locations. The comparison of the results demonstrates that wall shear stresses and wall strains are higher while wall stresses are lower at the more compliant section. The differences promote the probability of intimal thickening at some locations. Conclusions. The model is effective and gives satisfactory results. It could be extended to all kinds of arteries with complicated geometrical and material factors.
    Applied Bionics and Biomechanics 01/2015; 2015:1-6. DOI:10.1155/2015/213236
  • [Show abstract] [Hide abstract]
    ABSTRACT: Introduction. Polyaxial screws had been only tested according to the ASTM standards (when they were perpendicularly positioned to the rod). In this study, effects of the pedicle screws angled fixation to the rod on the mechanical properties of fixation were investigated. Materials and Method. 30 vertically fixed screws and 30 screws fixed with angle were used in the study. Screws were used in three different diameters which were 6.5 mm, 7.0 mm, and 7.5 mm, in equal numbers. Axial pull-out and flexion moment tests were performed. Test results compared with each other using appropriate statistical methods. Results. In pull-out test, vertically fixed screws, in 6.5 mm and 7.0 mm diameter, had significantly higher maximum load values than angled fixed screws with the same diameters (). Additionally, vertically fixed screws, in all diameters, had significantly greater stiffness according to corresponding size fixed with angle (). Conclusion. Fixing the pedicle screw to the rod with angle significantly decreased the pull-out stiffness in all diameters. Similarly, pedicle screw instrumentation fixed with angle decreased the minimum sagittal angle between the rod and the screw in all diameters for flexion moment test but the differences were not significant.
    Applied Bionics and Biomechanics 01/2015; 2015:1-9. DOI:10.1155/2015/150649
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order to understand the fracture mechanisms of bone subjected to external force well, an experimental study has been performed on the bovine bone by carrying out the three-point bending test with 3D digital image correlation (DIC) method, which provides a noncontact and full field of displacement measurement. The local strain and damage evolution of the bone has been recorded real time. The results show that the deflection measured by DIC agrees well with that obtained by the displacement sensor of the mechanical testing machine. The relationship between the deflection and the force is nearly linear prior to reaching the peak strength which is about 16 kN for the tested bovine tibia. The full-field strain contours of the bone show that the strain distribution depends on not only the force direction, but also the natural bone shape. The natural arched-shape bovine tibia bone could bear a large force, due to the tissue structure with high strength, and the fracture propagation process of the sample initiates at the inner side of the bone first and propagates along the force direction.
    Applied Bionics and Biomechanics 01/2015; 2015:1-6. DOI:10.1155/2015/609132
  • [Show abstract] [Hide abstract]
    ABSTRACT: Transverse gallop is a common gait used by a large number of quadrupeds. This paper employs the simplified dimensionless quadrupedal model to discuss the underlying mechanism of the transverse galloping pattern. The model is studied at different running speeds and different values of leg stiffness, respectively. If the horizontal running speed reaches up to a critical value at a fixed leg stiffness, or if the leg stiffness reaches up to a critical value at a fixed horizontal speed, a key property would emerge which greatly reduces the overall mechanical forces of the dynamic system in a proper range of initial pitch angular velocities. Besides, for each horizontal speed, there is an optimal stiffness of legs that can reduce both the mechanical loads and the metabolic cost of transport. Furthermore, different body proportions and landing distance lags of a pair of legs are studied in the transverse gallop. We find that quadrupeds with longer length of legs compared with the length of the body are more suitable to employ the transverse galloping pattern, and the landing distance lag of a pair of legs could reduce the cost of transport and the locomotion frequency.
    Applied Bionics and Biomechanics 01/2015; 2015:1-16. DOI:10.1155/2015/631354
  • [Show abstract] [Hide abstract]
    ABSTRACT: C-Arm image-assisted surgical navigation system has been broadly applied to spinal surgery. However, accurate path planning on the C-Arm AP-view image is difficult. This research studies 2D-3D image registration methods to obtain the optimum transformation matrix between C-Arm and CT image frames. Through the transformation matrix, the surgical path planned on preoperative CT images can be transformed and displayed on the C-Arm images for surgical guidance. The positions of surgical instruments will also be displayed on both CT and C-Arm in the real time. Five similarity measure methods of 2D-3D image registration including Normalized Cross-Correlation, Gradient Correlation, Pattern Intensity, Gradient Difference Correlation, and Mutual Information combined with three optimization methods including Powell’s method, Downhill simplex algorithm, and genetic algorithm are applied to evaluate their performance in converge range, efficiency, and accuracy. Experimental results show that the combination of Normalized Cross-Correlation measure method with Downhill simplex algorithm obtains maximum correlation and similarity in C-Arm and Digital Reconstructed Radiograph (DRR) images. Spine saw bones are used in the experiment to evaluate 2D-3D image registration accuracy. The average error in displacement is 0.22 mm. The success rate is approximately 90% and average registration time takes 16 seconds.
    Applied Bionics and Biomechanics 01/2015; 2015:1-9. DOI:10.1155/2015/478062
  • [Show abstract] [Hide abstract]
    ABSTRACT: Peristaltic pumping induced by a sinusoidal traveling wave in the walls of a two-dimensional channel filled with a viscous incompressible fluid mixed with rigid spherical particles is investigated theoretically taking the slip effect on the wall into account. A perturbation solution is obtained which satisfies the momentum equations for the case in which amplitude ratio (wave amplitude/channel half width) is small. The analysis has been carried out by duly accounting for the nonlinear convective acceleration terms and the slip condition for the fluid part on the wavy wall. The governing equations are developed up to the second order of the amplitude ratio. The zeroth-order terms yield the Poiseuille flow and the first-order terms give the Orr-Sommerfeld equation. The results show that the slip conditions have significant effect within certain range of concentration. The phenomenon of reflux (the mean flow reversal) is discussed under slip conditions. It is found that the critical reflux pressure is lower for the particle-fluid suspension than for the particle-free fluid and is affected by slip condition. A motivation of the present analysis has been the hope that such theory of two-phase flow process under slip condition is very useful in understanding the role of peristaltic muscular contraction in transporting biofluid behaving like a particle-fluid mixture. Also the theory is important to the engineering applications of pumping solid-fluid mixture by peristalsis.
    Applied Bionics and Biomechanics 01/2015; 2015:1-14. DOI:10.1155/2015/703574
  • [Show abstract] [Hide abstract]
    ABSTRACT: Foot binding has a long and influential history in China. Little is known about biomechanical changes in gait caused by bound foot. The purpose of this study was to investigate the differences in lower limb kinematics between old women with bound feet and normal feet during walking. Six old women subjects (three with bound feet and three controls with normal feet) volunteered to participate in this study. Video data were recorded with a high speed video camera and analysed in the SIMI motion analysis software. Compared to normal controls, bound feet subjects had faster gait cadence with shorter stride length as well as smaller ankle and knee range of motion (ROM). During preswing phase, ankle remained to be dorsiflexion for bound foot subjects. The data from bound foot group also demonstrated that toe vertical displacement increased continuously during whole swing phase without a minimum toe clearance (MTC). The findings indicate that older women with bound feet exhibit significant differences in gait pattern compared to those with normal feet, which is characterised by disappeared propulsion/push-off and reduced mobility of lower limb segments.
    Applied Bionics and Biomechanics 01/2015; 2015:1-5. DOI:10.1155/2015/589709
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background. Common manufactured depth sensors generate depth images that humans normally obtain from their eyes and hands. Various designs converting spatial data into sound have been recently proposed, speculating on their applicability as sensory substitution devices (SSDs). Objective. We tested such a design as a travel aid in a navigation task. Methods. Our portable device (MeloSee) converted 2D array of a depth image into melody in real-time. Distance from the sensor was translated into sound intensity, stereo-modulated laterally, and the pitch represented verticality. Twenty-one blindfolded young adults navigated along four different paths during two sessions separated by one-week interval. In some instances, a dual task required them to recognize a temporal pattern applied through a tactile vibrator while they navigated. Results. Participants learnt how to use the system on both new paths and on those they had already navigated from. Based on travel time and errors, performance improved from one week to the next. The dual task was achieved successfully, slightly affecting but not preventing effective navigation. Conclusions. The use of Kinect-type sensors to implement SSDs is promising, but it is restricted to indoor use and it is inefficient on too short range.
    Applied Bionics and Biomechanics 01/2015; 2015:1-9. DOI:10.1155/2015/543492