Journal of Polymer Science Part A Polymer Chemistry (J Polymer Sci Polymer Chem )

Publisher: John Wiley & Sons

Description

The Journal of Polymer Science reports results of fundamental research in all areas of synthetic and natural polymer chemistry and physics. The Journal is selective in accepting contributions on the basis of merit and originality. It is not intended as a repository for unevaluated data. Preference is given to contributions that offer new or more comprehensive concepts interpretations experimental approaches and results. Part A: Polymer Chemistry is devoted to studies in general organic polymer chemistry and physical organic chemistry. This includes all related topics (such as organic bioorganic bioinorganic and biological chemistry of monomers polymers oligomers and model compounds inorganic and organometallic chemistry for catalysts mechanistic studies supramolecular chemistry aspects relevant to polymers and reactions on polymers). Contributions in physics and physical chemistry appear in Part B: Polymer Physics . Contributions may be submitted as Regular Articles or as Rapid Communications. Reviews of recent books are also welcome.

  • Impact factor
    3.54
  • 5-year impact
    3.22
  • Cited half-life
    6.70
  • Immediacy index
    0.76
  • Eigenfactor
    0.04
  • Article influence
    0.66
  • Website
    Journal of Polymer Science Part A: Polymer Chemistry website
  • Other titles
    Journal of polymer science. Part A, Polymer chemistry (Online), Journal of polymer science. Part A, Polymer chemistry, Polymer chemistry
  • ISSN
    1099-0518
  • OCLC
    39029246
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

John Wiley & Sons

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • See Wiley-Blackwell entry for articles after February 2007
    • On personal web site or secure external website at authors institution
    • Not allowed on institutional repository
    • JASIST authors may deposit in an institutional repository
    • Non-commercial
    • Pre-print must be accompanied with set phrase (see individual journal copyright transfer agreements)
    • Published source must be acknowledged with set phrase (see individual journal copyright transfer agreements)
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • 'John Wiley and Sons' is an imprint of 'Wiley-Blackwell'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: We have newly designed an original bifunctional monomer (PAVE) containing both a phenylacetylene (PA) group and a vinyl ether (VE) group, which is expected to be a key material for the synthesis of brush-shaped polymers consisting of a poly(phenylacetylene) (polyPA) main chain and polyVE side chains. Actually, we have demonstrated the selective chemical transformation of the VE moiety of PAVE to an initiator site for the living cationic polymerization of isobutyl vinyl ether (IBVE), and then succeeded in the controlled synthesis of a novel PA-end-capped polyIBVE macromonomer. Moreover, using this macromonomer, the first synthesis of a brush-shaped polyPA bearing polyVE side chains was achieved via Rh complex-mediated homopolymerization. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on novel diblock copolymers of poly(N-vinylcaprolactam) (PVCL) and poly(N-vinyl-2-pyrrolidone) (PVPON) (PVCL-b-PVPON) with well-defined block lengths synthesized by the MADIX/reversible addition-fragmentation chain transfer (RAFT) process. We show that the lower critical solution temperatures (LCST) of the block copolymers are controllable over the length of PVCL and PVPON segments. All of the diblock copolymers dissolve molecularly in aqueous solutions when the temperature is below the LCST and form spherical micellar or vesicular morphologies when temperature is raised above the LCST. The size of the self-assembled structures is controlled by the molar ratio of PVCL and PVPON segments. The synthesized homopolymers and diblock copolymers are demonstrated to be nontoxic at 0.1–1 mg mL−1 concentrations when incubated with HeLa and HEK293 cancer cells for various incubation times and have potential as nanovehicles for drug delivery. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The frontal ring opening metathesis polymerization of dicyclopentadiene using first and second generation Grubbs' catalysts is reported. To have sufficiently long pot lives, dimethylaminopyridine is added as an inhibitor. By choosing the proper compositions, it is possible to determine the ranges in which pure frontal polymerization occurs. A thorough study on the effect of the above components on the maximum temperatures reached by the front and on its velocities is performed. Namely, temperatures range from 164 to 205 °C depending on the type of catalyst and the above component ratios. Besides, front velocities range from 1.0 to 15.0 cm/min, which are one of the lowest and one of the highest values reported so far in any frontal polymerization experiment reported in literature. This finding allows the complete control of the frontal ring opening polymerization of dicyclopentadiene also in practical applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability of a poly(2,7-carbazole) to disperse three samples of commercially available single-walled carbon nanotubes (raw HiPCO, purified HiPCO, and CoMoCAT nanotubes) has been investigated. UV–vis-NIR absorption spectroscopy, photoluminescence mapping, Raman spectroscopy, and atomic force microscopy were used to characterize the dispersions obtained. It was found that the polycarbazole preferentially interacted with semiconducting nanotubes and was efficient at dispersing smaller diameter (under 1.1 nm) carbon nanotubes. Larger diameter nanotubes could be dispersed to form stable suspensions in THF; however, it appeared that there were some small bundles present. It was found that annealing the purified HiPCO nanotubes at high temperature under an inert atmosphere greatly enhanced the ability of the polycarbazole to disperse the nanotubes and remove metallic species. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • Denis Hervé Seuyep Ntoukam, Gerrit Albert Luinstra, Patrick Theato
    [Show abstract] [Hide abstract]
    ABSTRACT: A new 1,1-disubstituted-2-vinylcyclopropane monomer bearing a ketone and a pentafluorophenyl ester was synthesized and successfully polymerized to yield a polymer with two side chain moieties readily available for post-polymerization modification. After a quantitative modification of the pentafluorophenyl moiety with amines, a subsequent second functionalization reaction was successfully performed on the ketone moiety leading to a double side-chain functionalized polymer using two different routes. The first route utilized hydrazide and hydroxylamine derivatives leading to a ketone conversion of 25 to 85%. In the second route, the ketone moiety was first reduced to alcohol (reduction conversion up to 100%) and then converted into the corresponding ester or urethane using acyl halides or isocyanates, respectively, with a conversion ratio of up to 90%. A library of functionalized polymers was synthesized to confirm the effectiveness of this approach. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article describes an effective strategy for retarding the simultaneous polymer formation during the ethylene oligomerization with bis(imino)pyridine iron catalysts, by addition of siloxanes as modifiers into such systems. The concurrent effects of a suitable siloxane [e.g., tetraethyl orthosilicate (TEOS), cyclohexylmethyldimethoxysilane (CHMMS), or dicyclopentyldimethoxysilane (DCPMS)] are to increase the activity for the soluble oligomers and dramatically decrease the activity for the insoluble polymers, thus synergistically making a pronounced reduction of the polymer share in the total products. Based on the experimental facts when commercial methylaluminoxane (MAO), trimethylaluminum (TMA)-depleted MAO, and trialkyl aluminums (e.g., TMA) are applied as co-catalyst, respectively, the functional mechanism of siloxanes is preliminarily discussed. It is proposed that TMA containing in the commercial MAO makes little contribution to the final product but lowers the activity. And, there may be a close relationship between the anionic MAO cages and the insoluble polymer production. The influence of siloxanes exert on the catalyst systems could be a comprehensive result of the interactions between siloxanes and the catalytic components, through the modulation on both the electronic and steric effects of the active centers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In an effort to develop a green process for the production of elastomeric polyurethane–urea (PUaE) through a nonisocyanate route, a highly practical method was found using diphenyl carbonate (DPC) instead of diisocyanate as the carbonylation agent. The transesterification of aliphatic diamines in a solvent such as tetramethylene sulfone (TMS) with DPC results in a new process obtaining new segmented PUaE with high molecular weights and excellent mechanical performance. The key to the present success lies in the timing and sequence of the diamine addition forming initial carbamate intermediates in situ and then in shifting the equilibrium toward polyurea product formation by phenol removal from the TMS solution so that high-molecular-weight polyurea could be formed favorably. The most optimized polyurea films made in this study has a ηinh of 0.64, with high-performance characteristics showing tensile strength of greater than 30 MPa and elongation exceeding 400% with decomposition temperature (5%) of >280 °C. Well-defined soft- and hard-segment domains were observed for the products as determined by atomic force microscope. This new improved process to produce segmented polyurea thereby complies fully with the principles of green chemistry using readily available chemicals. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Acid-degradable molecular brushes with polycarbonate backbone and densely grafted side chains (∼1.9 SCs per backbone repeating unit) were synthesized for the first time using the grafting-onto method. Extremely efficient copper-catalyzed azide-alkyne cycloaddition click reactions between the polycarbonate backbone containing two pendant azido groups per backbone unit and alkynyl-terminated poly (methyl acrylate) (ay-PMA72, average degree of polymerization DP = 72) SCs were demonstrated to finish in 10 min with a quantitative conversion of the azido groups. Similar grafting efficiencies were also achieved when using alkynyl-terminated polystyrene (ay-PS), poly(ethylene oxide) (ay-PEO), and poly (t-butyl acrylate)-b-polystyrene (ay-PtBA-b-PS) to successfully prepare molecular brushes with high grafting density (>1.8 SCs per backbone repeating unit). Under acidic condition, the polycarbonate backbones were completely degradable and the final degraded product of the molecular brushes was a linear polymer chain with molecular weight two times of the SCs. When a mixture of hydrophobic ay-PS and hydrophilic ay-PEO chains was used, amphiphilic heterobrushes PC-g-(PS-co-PEO) were synthesized, which could self-assemble into micelles or vesicles in selective solvents, depending on the ratio of the two SCs in the brush. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Polypeptides have received noticeable attention in the biomedical field due to their structural versatility and biomimetic properties. Particularly, polypeptides that are responsive to biological stimuli, such as mildly acidic extracellular and intracellular conditions, have great potential as delivery carriers for therapeutics. However, synthesis of high-molecular-weight acid-labile peptides is often daunting due to highly restrictive polymerization conditions and limitations in preserving acid-degradable functional groups. For instance, the popular N-carboxyanhydride (NCA) ring-opening polymerization (ROP) is efficient, but acid-labile NCA monomers are difficult to synthesize and store. In this study, acid-labile polypeptides with high molecular weights were synthesized under mild, permissive conditions using carboxylated urethane derivative monomers which are stable for ease of handling. The polymerization was successful in various organic solvents at room temperature, and did not require additional energy or initiation to drive the formation of NCA intermediates. The polymerization was also rapid enough to be independent of inert atmosphere. The strategy explored here to synthesize high-molecular-weight acid-labile polypeptides offers significant advantages including facile synthesis of acid-labile urethane derivative monomers that are stable, even in contact with moisture, and fast polymerization under easily achievable conditions. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A novel combination of atom transfer radical polymerization (ATRP) and redox polymerization is here used to allow instrument-free visualization of special biomolecules for which dynamic polymer growth is used in signal amplification. In this method, the convenient and mild redox polymerization-assisted amplification with cerium ammonium (IV) nitrate as oxidant at the second stage was achieved by directly using the hydroxyl groups from poly(hydroxyethyl methacrylate) (PHEMA) synthesized via ATRP at the first stage. The brushed polymers poly(hydroxylethyl methacrylate)-branched-poly (acrylamide) (PHEMA-branched-PAM) prepared by successive ATRP and redox polymerization in situ drastically grew up at the detected biomolecules spot to improve the visibility of biomolecule and simplify the detection procedure. With the proposed strategy, the signal amplification of streptavidin (SA) as model detected biomolecule was investigated on two different substrates such as silicon wafer and gold, respectively. As a result, detection limit of SA was demonstrated on the gold substrates where binding of 1.0 ng/mL SA was differentiable from the background using ellipsometry. Moreover, binding of 0.5 nmol/L DNA led to visually distinguishable spots on the gold surface under mild condition. The proposed method exhibited an efficient amplification performance for molecules detection, and paved a new way for visual diagnosis of biomolecules. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A random copolymer [p(MMA/DMAB)] composed of methyl methacrylate (MMA) and 2,2-dimethoxy-1,2-di(4-methacryloyloxy)phenylethane-1-one (DMAB), which can simultaneously act as a photoradical initiator and crosslinkable monomer, was prepared by free radical random copolymerization. A hydrophobic film on quartz glass was prepared using p(MMA/DMAB) by a spin-coating technique. Hydrophilic methacrylic acid (MA) and 2-methacryloyloxyethyl phosphorylcholine (MPC) were graft-copolymerized from the hydrophobic p(MMA/DMAB) film in water by photo-cleavage of the DMAB unit. The graft copolymer of MA and MPC was characterized by infrared and X-ray photoelectron spectroscopies and contact angle measurements. To confirm that MPC can be grafted onto the surface of the film selectively at only UV-irradiated sites, photoinduced graft copolymerization of MPC using a photomask was performed to prepare a pMPC patterned p(MMA/DMAB) film. The film was stained using a rhodamine 6G dye that can absorb specifically to pMPC to confirm the pMPC pattern. The p(MMA/DMAB) film can be applied to various fields including photolithography and biomedical applications, because the film surface properties can be controlled using various vinyl monomers selectively on UV-irradiated sites. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article reports a new type of silicone-containing nanogel. The nanogel was dispersed in triethylene glycol dimethacrylate (TEGDMA) in increments between 10 and 40 wt % with a series of properties evaluated before and after polymerization. The nanogel raised monomer viscosity but did not significantly affect reaction kinetics or final conversion attained during photopolymerization. Polymerization stress was reduced progressively with the addition of nanogel with a significant delay in the onset of stress observed compared with the control. The self-floating ability of the nanogel was demonstrated by elemental analysis and X-ray photoelectron spectroscopy. As a result, the nanogel spontaneously formed a concentration gradient in the monomer prior to photopolymerization, leading to a gradient change of properties of the polymer. The research on surface morphology and elemental composition of PTEGDMA indicated the enrichment of the nanogel on the polymer surface, which resulted in enhanced hydrophobic character along with altered surface microstructure. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Directed delivery of mesoscaled cargo—for example, nanocrystals, proteins, or nucleic acids—to cells using polymer vectors impacts numerous biomedical fields. We introduce here the concept of dynamic complementarity as a simple, yet powerful approach to control the rate of mesoscaled cargo dissociation from colloidal polymer vectors once inside the cytosol. By tuning the degree of electrostatic reciprocity between the polymer vector and its cargo, it is possible to both deliver and release large cargo in live cells in a controllable manner over both long and short periods, pointing to a highly modular materials platform with molecularly tailored properties suited to task. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Anionic polymerizations of acrylates possessing 1-pyrenyl (Py1), 1-naphthyl (Np1), 2-naphthyl (Np2), and 2-fluorenyl (Fl2) groups as α-substituents were investigated as well as the properties of the obtained polymers. Py1 and Np1 did not undergo polymerization, whereas Np2 and Fl2, annulated α-phenylacrylates at 3,4-position of the phenyl group, afforded homo-oligomers and alternating copolymers with methyl methacrylate (MMA). The oligomer of Fl2 [oligo(Fl2)] exhibited strong excimer emission in diluted solution. In contrast, dominant monomer emission was observed for the alternating copolymer with MMA [poly(Fl2-co-MMA)]. In the alternating copolymer, MMA units could function as spacers preventing the association of pendant fluorene moieties to suppress the excimer formation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this article, the synthesis and self-assembly of a novel well-defined biocompatible amphiphilic POEGMA-PDMS-POEGMA triblock copolymer were studied. The copolymer was synthesized by atom transfer radical polymerization of oligo(ethylene glycol) methyl ether methacrylate (OEGMA) using α,ω-dibromo polydimethylsiloxane macroinitiator (Br-PDMS-Br). Br-PDMS-Br was synthesized through the esterification of α,ω-hydroxypropyl polydimethylsiloxane and 2-bromoisobutyryl bromide. The structures of the copolymers were confirmed by proton nuclear magnetic resonance spectroscopy, and gel permeation chromatography. The copolymers showed reversible aggregation in response to temperature cycles with a lower critical solution temperature (LCST) between 61 and 66 °C, as determined by ultraviolet-visible spectrophotometry and dynamic light scattering. The LCST values increased in proportion to the length of the hydrophilic block and were lower than that of the POEGMA homopolymer. The self-assembly behavior of the copolymers in aqueous solution was investigated by fluorescence spectroscopy and transmission electron microscopy. The critical micelle concentration value (1.08–0.26 10−6 mol L−1) decreased as the length of the POEGMA chain increased. The POEGMA-PDMS-POEGMA copolymers can easily self-assemble into spherical micelles in aqueous solution. Such biocompatible block copolymers may be attractive candidates as ‘‘smart'' thermo-responsive drug delivery systems. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: 3-Methyl-(E)-stilbene (3MSti) and 4-(diethylamino)-(E)-stilbene (DEASti) monomers are synthesized and polymerized separately with maleic anhydride (MAn) in a strictly alternating fashion using reversible addition-fragmentation chain transfer (RAFT) polymerization techniques. The optimal RAFT chain transfer agents (CTAs) for each copolymerization affect the reaction kinetics and CTA compatibilities. Psuedo-first order polymerization kinetics are demonstrated for the synthesis of poly((3-methyl-(E)-stilbene)-alt-maleic anhydride) (3MSti-alt-MAn) with a thiocarbonylthio CTA (methyl 2-(dodecylthiocarbonothioylthio)−2-methylpropionate, TTCMe). In contrast, a dithioester CTA (cumyl dithiobenzoate, CDB) controls the synthesis of poly((4-(diethylamino)-(E)-stilbene)-alt-maleic anhydride) (DEASti-alt-MAn) with pseudo-first order polymerization kinetics. DEASti-alt-MAn is chain extended with 4-acryloylmorpholine (ACMO) to synthesize diblock copolymers and subsequently converted to a double hydrophilic polyampholyte block copolymers (poly((4-(diethylamino)-(E)-stilbene)-alt-maleic acid))-b-acryloylmorpholine) (DEASti-alt-MA)-b-ACMO) via acid hydrolysis. The isoelectric point and dissociation behavior of these maleic acid-containing copolymers are determined using ζ-potential and acid–base titrations, respectively. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: ABA triblock copolymers were synthesized using two polymerization techniques, polycondensation, and atom transfer radical polymerization (ATRP). A telechelic polymer was synthesized via polycondensation, which was then functionalized into a difunctional ATRP initiator. Under ATRP conditions, outer blocks were polymerized to form the ABA triblock copolymer. Six types of samples were prepared based on a poly(ether ether ketone) or poly(arylene ether sulfone) center block with either poly(methyl methacrylate), poly(pentafluorostyrene), or poly(ionic liquid) outer blocks. As polycondensation results in polymers with broad molecular weight distribution (MWD), the center of these triblock copolymers are disperse, while the outside blocks have narrow MWD due to the control afforded from ATRP. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the synthesis of glyco(poly(2-oxazoline)s) functionalized with Pt(II) units for targeted tumor applications. To this end, poly(2-ethyl-2-oxazoline-block-2-(3-butenyl)-2-oxazoline) is modified with thiol-modified acetyl protected glucose and galactose, respectively, and terpyridine (tpy) units using thiol-ene photoaddition. Deprotection of the sugars with sodium methoxide and treatment with Pt(COD)Cl2 applying a mild synthesis route yields polymers with monosaccharide targeting moieties and cytotoxic Pt(II) units. The polymers and intermediates are characterized by 1H nuclear magnetic resonance spectroscopy and size exclusion chromatography. Subsequently, the hemolytic activity, induction of erythrocyte aggregation as well as the cytotoxicity against mouse fibroblast L929 cells, human embryonic kidney cells HEK 293, and human hepatocytes HepG2 are studied. The comparison to cisplatin, the standard for cancer therapy, demonstrates the potential of the presented system. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014
    Journal of Polymer Science Part A Polymer Chemistry 07/2014;

Related Journals