Journal of Polymer Science Part B Polymer Physics (J Polymer Sci B Polymer Phys )

Publisher: John Wiley & Sons

Description

The Journal of Polymer Science reports results of fundamental research in all areas of high polymer chemistry and physics. The Journal is selective in accepting contributions on the basis of merit and originality. It is not intended as a repository for unevaluated data. Preference is given to contributions that offer new or more comprehensive concepts interpretations experimental approaches and results. Part B: Polymer Physics accepts contributions in physics and physical chemistry. Contributions may be submitted as Regular Articles as Rapid Communications or as Notes. Regular articles are full length papers to be considered as complete publications of original unpublished results. Rapid Communications refer to mostly preliminary reports of extreme urgency significance and originality which should be limited to a maximum of 3 printed pages. Papers to be submitted for consideration as Notes should be short versions of Regular Articles.

  • Impact factor
    2.22
  • 5-year impact
    2.03
  • Cited half-life
    0.00
  • Immediacy index
    0.59
  • Eigenfactor
    0.01
  • Article influence
    0.60
  • Website
    Journal of Polymer Science Part B: Polymer Physics website
  • Other titles
    Journal of polymer science. Part B, Polymer physics (Online), Journal of polymer science. Part B, Polymer physics, Polymer physics
  • ISSN
    1099-0488
  • OCLC
    39028915
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

John Wiley & Sons

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • See Wiley-Blackwell entry for articles after February 2007
    • On personal web site or secure external website at authors institution
    • Not allowed on institutional repository
    • JASIST authors may deposit in an institutional repository
    • Non-commercial
    • Pre-print must be accompanied with set phrase (see individual journal copyright transfer agreements)
    • Published source must be acknowledged with set phrase (see individual journal copyright transfer agreements)
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • 'John Wiley and Sons' is an imprint of 'Wiley-Blackwell'
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Free poly(L-lactic acid) (PLLA) sheaves and spherulites were prepared by thermally induced phase separation method from its tetrahydrofuran solution without the assistance of other additives. The effects of variables such as polymer concentration, quenching temperature and time on the morphology of PLLA spherulites were studied. The morphology, size, degree of crystallinity, and crystal structure of spherulites were characterized by SEM, DSC and XRD, and so forth. No obvious sheaves or spherulites were observed at quenching temperature of 8 and 0 °C, whereas sheaves composed of fluffy nanofibers with diameter of about 250 nm were formed at quenching temperature range of −10 to −40 °C. With increasing quenching time, the PLLA morphology changed from small sheaves to big sheaves (cauliflower-like) to spherulites. Low concentration (3 and 5 wt %) solutions were favorable for the formation of sheaves, whereas high concentration (7 wt %) solution as good for the formation of spherulites. The mechanism for the formation of PLLA sheaves or spherulites was examined by the isothermal and nonisothermal crystallization of PLLA/tetrahydrofuran solutions using DSC. The Avrami equation was used to analyze the data and good linear double-logarithmic plots were obtained. The Avrami exponent n and rate constant K indicated the crystal growth mechanism was intermediate between completely instantaneous and completely sporadic types of nucleation and growth, and the spherulites were there dimensional. Compared to the spherulites embedded in the bulky film obtained from the melt processing, this study provided a feasible technique for the fabrication of free PLLA spherulites. The PLLA spherulites composed of fluffy nanofibers with a high porosity (≥90%) may be potentially applied as functional materials such as catalyst support, adsorption and biomedical materials, and so forth. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnetic nanoparticles (MNPs) with a size of about 2 nm are prepared in nanoreactors of spherical polyelectrolyte brushes (SPBs) consisting of a solid polystyrene (PS) core and a shell of linear poly(acrylic acid) (PAA) chains densely grafted onto the core by one end. The synthesized MNP are strongly adhered to PAA chains due to the intense interaction of chemical coordination with the carboxyl groups. The generation of MNP in SPB layer is legibly revealed by small-angle X-ray scattering (SAXS) due to the significant increase in electron density. The radial distribution of MNP in SPB is built by fitting SAXS data. Most of MNP are found to locate nearby the surface of PS core. Compared to dynamic light scattering and transmission electron microscopy, SAXS can observe the generation and distribution of MNP in SPB as well as the changes upon changing pH and salt concentration in real time. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, the stress recovery behavior of shape memory polyurethane (SMPU) fiber was investigated. The as-spun SMPU fibers were subjected to various programing-recovery conditions. It was observed that recovering at 100 °C generated higher recovery stress than recovering at 150 °C. It was also found that, while hot-drawn programed fiber has higher recovery stress than cold-drawn programed fiber if recovered at 100 °C, cold-drawn programed fiber has higher stabilized recovery stress than hot-drawn programed counterpart when recovered at 150 °C. A morphological model was proposed based on the results from differential scanning calorimetry, Fourier transform infrared spectrometry, and X-ray diffraction to understand the physics behind the different stress recovery behaviors. It is found that SMPU experiences different phase transitions and phase separations under different programing and stress recovery conditions. It is concluded that the two sequential phase separations taking place at 100 and 150 °C are primarily responsible for the differences in the stress recovery behavior. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Flash differential scanning calorimetry was used to study the glass transition temperature Tg of polycarbonate ultrathin films. The investigation was made as a function of film thickness from 22 to 350 nm and over a range of cooling rates from 0.1 to 1000 K/s. Polycarbonate spin cast films were floated on a layer of grease on the calorimetric chip. The results show a greatly reduced glass temperature for the thinnest films relative to the macroscopic value. We also observed that the magnitude of the glass temperature reduction decreases as the cooling rate increases with the highest cooling rates showing little thickness dependence of the Tg. Dynamic fragility and activation energy at Tg were found to decrease with decreasing film thickness. The results are discussed in the context of literature reports for supported and freely standing polycarbonate films. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The enthalpy of fusion for a perfect, infinite poly(3-hexylthiophene) (P3HT) crystal () must be known to evaluate the absolute crystallinity of P3HT. This value, however, is still ambiguous as different values have been reported using various experimental techniques. Here, we extrapolate the enthalpy of fusion for extended chain crystals of oligomeric P3HT to infinite molecular weight and obtain a value of 42.9 ± 2 J/g employing differential scanning calorimetry with a correction based on grazing incidence small angle X-ray scattering data. Also, we define the onset of chain folding within P3HT crystallites at a chain length of 5 Kuhn segments. Knowledge of allows calculation of P3HT percent crystallinity in thin films for applications such as organic field effect transistors and solar cells. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The suitability of the Guggenheim–Anderson–De Boer (GAB) model for the parameterization of gas sorption isotherms and their dependences on temperature is explored. The GAB model implies that molecules adsorb on inner surfaces of the polymer in multilayers, which contrasts with the assumptions of the classical Dual Mode Sorption (DMS) model which implies the simultaneous occurrence of Henry-like dissolution and Langmuir's case I adsorption. The GAB model shows similar efficacy of the parameterization of the gas sorption isotherms in polymers as the DMS model. The isosteric heat of adsorption shows clear dependence on relative surface coverage for carbon dioxide sorption in cellulose acetate, polyethylene terephthalate, and the first polymer of intrinsic microporosity (PIM-1), thus allowing for the occurrence of adsorption multilayers. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Giant surfactants are polymer-tethered molecular nanoparticles (MNPs) and can be considered as a subclass of giant molecules. The MNPs serve as functionalized heads with persistent shape and volume, which may vary in size, symmetry, and surface chemistry. The covalent conjugation of MNPs and polymer tails affords giant surfactants with diverse composition and architecture. Synthetic strategies such as “grafting-from” and “grafting-onto” have been successfully applied to the precise synthesis of giant surfactants, which is further facilitated by the emergence of “click” chemistry reactions. In many aspects, giant surfactants capture the essential features of small-molecule surfactants, yet they have much larger sizes. They bridge the gap between small-molecule surfactants and traditional amphiphilic macromolecules. Their self-assembly behaviors in solution are summarized in this Review. Micelle formation is affected not only by their primary chemical structures, but also by the experimental conditions. This new class of materials is expected to deliver general implications on the design of novel functional materials based on MNP building blocks in the bottom-up fabrication of well-defined nanostructures. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report the high strain-rate response of a spiropyran (SP) mechanophore in poly(methylmethacrylate). Previous work on this system has demonstrated a reversible bond scission in the SP under local tensile force, converting it to a fluorescent merocyanine form. A Hopkinson bar was used to apply fast compressive loads at rates from 102 to 104 s−1, resulting in significant activation of the SP near fracture surfaces. However, comparison with a similar thermochromic SP reveals that much of the observed activation likely arises from thermal effects during high-rate fracture. These results show the importance of a thermally active control system in distinguishing mechanochromic response during high-rate loading. Microscale fluorescence mapping of the fracture surfaces using a confocal Raman microspectrometer suggests that some distinct mechanical activation may be occurring in craze-like regions during fibril rupture. The thermal response of the SP is useful in its own right for characterizing plastic heating regions during dynamic fracture. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Electrospinning is a powerful technique to produce nanofibers of tunable diameter and morphology for medicine and biotechnological applications. By doping electrospun nanofibers with inorganic and organic compounds, new functionalities can be provided for technological applications. Herein, we report a study on the morphology and optical properties of electrospun nanofibers based on the conjugated polymer poly[2-methoxy-5-(2-ethylhexyloxy)-1,4-phenylenevinylene] (MEH-PPV) and poly(methylmethacrylate) (PMMA). Initially, we investigate the influence of the solvent, surfactant, and the polymer concentration on electrospinning of PMMA. After determining the best conditions, 0.1% MEH-PPV was added to obtain fluorescent nanofibers. The optical characterizations display the successful impregnation of MEH-PPV into the PMMA fibers without phase separation and the preservation of fluorescent property after fiber electrospinning. The obtained results show the ability of the electrospinning approach to obtain fluorescent PMMA/MEH-PPV nanofibers with potential for optical devices applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Organic material characteristics of volume change and stress generation have attracted the attention of many researchers aiming to develop chemomechanical systems such as artificial muscles and polymer engines having the advantages of high energy density and silent operation. Although polymer gels offer a relatively large actuator stroke, their mechanical properties are relatively poor and the working temperature is relatively low, often limited by the evaporation of liquid if contained. We have developed an iodine-treated poly(vinyl alcohol) having extraordinarily large vapor-induced deswelling stress reaching 59 MPa, which is one to two orders of magnitude greater than those of ordinary polymer gels. Furthermore, this material has extremely large volumetric and gravimetric energy densities reaching 1.3 × 106 J m−3 and 9.6 × 102 J kg−1, respectively, and an elastic modulus of a few GPa and is heat-resistant to at least 200 °C. The high performance of this material can be demonstrated by a jump of a film. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014, 00
    Journal of Polymer Science Part B Polymer Physics 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Compounds of isotactic polypropylene (iPP) and β-nucleating agent were used to investigate the relationship between the development of β phase and molecular weight in iPP under quiescent crystallization conditions by using wide angle X-ray diffraction and differential scanning calorimetry techniques. In all cases, the dependency of the formation of β phase in iPP on molecular weight of iPP at a defined crystallization temperature range was found. The iPP with high molecular weight possessed a wide range of crystallization temperature in inducing rich β phase. However, poor or even no β phase was obtained for the samples with low molecular weight in the same range. In addition, an upper critical crystallization temperature of producing dominant β phase was found at 125 °C. Beyond this temperature, a phenomenon of prevailing α phase became obvious. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of steam on the micro-phase structure and mechanical properties of different block copolymers used in biomedical devices is investigated via FT-IR, tensile tests and dynamic mechanical analysis (DMA). Steam sterilization, commonly performed on medical devices and simulated in this work, affects the copolymers' morphology, due to high temperature and humidity conditions. FT-IR analysis reveals that steam induces a modification in the crystalline conformations of copolymers with a pre-existing hydrogen bonding network, that is, thermoplastic polyurethanes (TPU) and poly(ether-block-amide) (PEBA), while it does not significantly affect the domain conformation in styrenic block copolymers (SEBS), due to weak interaction with water. As a consequence, relevant changes of the mechanical properties, closely related to the microdomain structure, are found for TPU and PEBA after sterilization, while SEBS mechanical behavior remains stable, as demonstrated by tensile tests and DMA results. For this reason, SEBS is suggested as the best choice in terms of durability in biomedical applications. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, slightly charged thermo-responsive gels in the presence of salt at concentrations close to physiological conditions have been simulated within a coarse-grained model widely used in the last decade. These simulations allow differentiate charge and salt effects, which are antagonist and coupled in many real systems because the degree of ionization might depend on the electrolyte concentration. An analysis in terms of the different contributions to osmotic pressure is also presented, which highlights the role played by excluded volume effects. In addition, our results also permit us to test some predictions based on the ideal Donnan equilibrium, a common assumption made to justify the swelling behavior of gels and microgels in the presence of salt. More specifically, simulations show that, for the slightly charged gels simulated here, such an assumption overestimates the concentration of salt inside collapsed gels and underestimates the excess of osmotic pressure associated to the additional electrolyte. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: PS-b-PCL block copolymer is used to study its influence on the phase evolution of epoxy resin/polyetherimides (PEI) blends cured with methyl tetrahydrophthalic anhydride. The effect of PS-b-PCL on the reaction-induced phase separation of the thermosetting/thermoplastic blends is studied via optical microscopy, scanning electron microscope, and time-resolved light scattering. The results show that secondary phase separation and typical phase inverted morphologies are obtained in the epoxy/PEI blends with addition of PS-b-PCL. It can be attributed to the preferential location of the PS-b-PCL in the epoxy-rich phase, which enhances the viscoelastic effect of epoxy/PEI system and leads to a dynamic asymmetry system between PEI and epoxy. The PS-b-PCL block copolymer plays a critical role on the balance of the diffusion and geometrical growth of epoxy molecules. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The crystallization of polymers in cylindrical geometries is important as interest in polymer nanowires and nanostructures grows. Here, semicrystalline isotactic poly(propylene) (iPP) is shown to crystallize in a homogeneous, low-dimensional fashion when confined in cylindrical pores as small as 15 nm. A strong dependence on pore diameter is demonstrated. Isothermal crystallization studies suggest a reduced Avrami exponent as pore diameter decreases and as crystallization time increases. Complementary X-ray diffraction with tilt (texture analysis) reveals one-dimensional ordering of iPP crystals within pores of 40 nm diameter or less in which crystals preferentially orient, perpendicular to the pore wall. These findings demonstrate that the origin of this orientation is related to the impingement of crystals against the pore wall, thus “freezing out” polymer crystallizing in nonpreferred directions. These results show that curvature-directed crystallization is one potential means to control a polymer's crystallization rate and orientation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We study the self-entanglement of a single linear polymer chain with N monomers confined to a cubic box (L × L × L) using the bond-fluctuation lattice model and primitive path analysis. We probe chains with N between 30 and 750 and vary the degree of confinement L/Rg0 between 0.4 and 12, where Rg0 is the radius of gyration of an unconfined polymer. We find that the conformational properties Rg/Rg0 and Lp/Rg0, where Lp is the average primitive path length, collapse onto a single master curve as a function of the degree of confinement. In the strongly confined regime, L/Rg0 < 1, we find that Rg/Rg0 ∼ (L/Rg0)0.8 and (Lp/Rg0) ∼ (L/Rg0)−2. We verify that the simulation methodology used is quantitatively consistent with experimental data, and the Colby-Rubinstein entanglement model for unconfined concentrated polymer solutions. The most significant difference between unconfined and confined systems is the variation of Lp with monomer density ϕ; Lp ∼ ϕ5/9, in the former, and Lp ∼ ϕ2/3, in the latter. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Semi-interpenetrating polymer networks (semi-IPNs) were prepared by reactions of 2,4-tolylene diisocyanate (TDI) and hydroxy-terminated 4-arm star-shaped l-lactide oligomers (H4LAOn's) with the degrees of polymerization of lactate unit per one arm, n = 3, 5, and 10 in the presence of poly(ε-caprolactone) (PCL). Morphologies, thermal, and mechanical properties of the TDI-bridged H4LAOn (TH4LAOn)/PCL semi-IPNs were evaluated by comparing with those of poly(l-lactide) (PLA)/PCL blends. Compatibility between the two components of the TH4LAOn/PCL semi-IPN with a PCL content not more than 50 wt % was much better than those of the PLA/PCL blends with the same PCL content. All the TH4LAOn networks were substantially amorphous and their tan δ peak or glass transition temperatures increased with decreasing n value. Most of the semi-IPNs did not show clear glass transition temperature related to both the components. Tensile toughness and elongation at break for all the TH4LAOn/PCL semi-IPNs were much higher than those for the PLA/PCL blends with the same PCL content. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: To elucidate the driving forces for phase separation and proton conductivity in polystyrenic alkoxy 1H-tetrazole (PS-Tet), an analogous polystyrenic alkoxy carboxylic acid (PS-HA) was synthesized and the conductivity and chain dynamics of both materials measured. Proton and polymer motions illustrate dramatic differences in the nonaqueous behavior of carboxylic acids and 1H-tetrazoles, belying similarities in their aqueous properties. Exceptional interactions between 1H-tetrazoles drive phase separation not observed in PS-HA or reported for other azole-containing homopolymers. PS-HA and PS-Tet exhibit both dry (0% relative humidity) and hydrated proton dissociations proportional to their aqueous pKas, with residual water acting as the proton acceptor in both polymers. While water is the sole contributor to mobility in PS-HA, PS-Tet exhibits dynamic interactions with water allowing 1H-tetrazole moieties to contribute to proton conduction even in the hydrated state. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014
    Journal of Polymer Science Part B Polymer Physics 08/2014;

Related Journals