Journal of Polymer Science Part B Polymer Physics Impact Factor & Information

Publisher: Wiley

Journal description

The Journal of Polymer Science reports results of fundamental research in all areas of high polymer chemistry and physics. The Journal is selective in accepting contributions on the basis of merit and originality. It is not intended as a repository for unevaluated data. Preference is given to contributions that offer new or more comprehensive concepts interpretations experimental approaches and results. Part B: Polymer Physics accepts contributions in physics and physical chemistry. Contributions may be submitted as Regular Articles as Rapid Communications or as Notes. Regular articles are full length papers to be considered as complete publications of original unpublished results. Rapid Communications refer to mostly preliminary reports of extreme urgency significance and originality which should be limited to a maximum of 3 printed pages. Papers to be submitted for consideration as Notes should be short versions of Regular Articles.

Current impact factor: 3.83

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 3.83
2013 Impact Factor 2.548
2012 Impact Factor 2.221
2011 Impact Factor 1.531
2010 Impact Factor 1.298
2009 Impact Factor 1.586
2008 Impact Factor 1.586
2007 Impact Factor 1.524
2006 Impact Factor 1.622
2005 Impact Factor 1.739
2004 Impact Factor 1.391
2003 Impact Factor 1.369
2002 Impact Factor 1.221
2001 Impact Factor 1.18
2000 Impact Factor 1.268
1999 Impact Factor 1.265
1998 Impact Factor 1.031
1997 Impact Factor 1.327
1996 Impact Factor 1.423
1995 Impact Factor 1.236
1994 Impact Factor 1.35
1993 Impact Factor 1.503
1992 Impact Factor 1.526

Impact factor over time

Impact factor

Additional details

5-year impact 2.99
Cited half-life >10.0
Immediacy index 0.85
Eigenfactor 0.01
Article influence 0.81
Website Journal of Polymer Science Part B: Polymer Physics website
Other titles Journal of polymer science. Part B, Polymer physics (Online), Journal of polymer science. Part B, Polymer physics, Polymer physics
ISSN 1099-0488
OCLC 39028915
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Some journals have separate policies, please check with each journal directly
    • On author's personal website, institutional repositories, arXiv, AgEcon, PhilPapers, PubMed Central, RePEc or Social Science Research Network
    • Author's pre-print may not be updated with Publisher's Version/PDF
    • Author's pre-print must acknowledge acceptance for publication
    • Non-Commercial
    • Publisher's version/PDF cannot be used
    • Publisher source must be acknowledged with citation
    • Must link to publisher version with set statement (see policy)
    • If OnlineOpen is available, BBSRC, EPSRC, MRC, NERC and STFC authors, may self-archive after 12 months
    • If OnlineOpen is available, AHRC and ESRC authors, may self-archive after 24 months
    • Publisher last contacted on 07/08/2014
    • This policy is an exception to the default policies of 'Wiley'
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Methacrylate derived monomers functionalized with pendant oxadiazole moieties were synthesized and copolymerized with carbazole containing monomers to form polymers with electron and hole transporting fragments in the same molecule. Substituents on the oxidazole moiety were varied with the purpose of bandgap tuning and performance optimization when employed in single-layer organic light emitting devices (OLED). Quantum mechanical calculations of the HOMO-LUMO levels of the oxidazole derivatives were used to down-select promising candidates for chemical synthesis and testing in single-layer OLEDs.
    Journal of Polymer Science Part B Polymer Physics 12/2015; 53(23):1663-1673. DOI:10.1002/polb.23813
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, the thermal properties of a fluoroelastomer enhanced by graphene were systematically investigated. Although graphene oxide (GO) is the most popular and cheapest source for graphene, its chemical and thermal properties were quite different from reduced graphene oxide (RGO). By comparing their influences on the thermal properties of elastomer, the effects from chemical structures and morphologies of graphene were analyzed. As the vulcanization and decomposition determine the properties of the elastomer proved by significantly different thermo-mechanical properties of the fluoroelastomer reinforced by GO and RGO presented, this work provides a method to ultimate utilize graphene to reinforce elastomer.
    Journal of Polymer Science Part B Polymer Physics 12/2015; 53(23):1691-1700. DOI:10.1002/polb.23890
  • [Show abstract] [Hide abstract]
    ABSTRACT: Matrix free assemblies of polymer-grafted, “hairy” nanoparticles (aHNP) exhibit novel morphology, dielectric, and mechanical properties, as well as providing means to overcome dispersion challenges ubiquitous to conventional polymer-inorganic nanocomposite blends. Physical aging of the amorphous polymer glass between the close-packed nanoparticles (NPs) will dominate long-term stability; however, the energetics of volume recovery within the aHNPs is unknown. Herein, we compare glass transition temperature (Tg) and enthalpy recovery of aHNPs to NP-polymer blends, across different nano-silica loadings (0–50 v/v%) and canopy architecture of polystyrene (PS) grafted silica. For aHNPs, the grafting of PS to silica imposes an additional design constraint between silica volume fraction, graft density, and graft molecular weight. At low and intermediate silica volume fraction, the Tg of blended nanocomposites is independent of silica content, reflecting a neutral polymer-NP interface. For aHNPs, the Tg decreases with silica content, implying that chain tethering decreases local segment density more than the effect of molecular weight or polymer-NP interactions. Additionally, the Tg of the aHNPs is higher than a linear matrix of comparable molecular weight, implying a complementary effect to local segment density that constrains cooperativity. In contrast, enthalpy recovery rate in the blend or aHNP glass is retarded comparably. In addition, a cross-over temperature, Tx, emerges deep within the glass where the enthalpy recovery process of all nanocomposites becomes similar to linear unfilled matrices. Differences between structural recovery in aHNP and blended nanocomposites occur only at the highest silica loadings (∼ 50 v/v%), where enthalpy recovery for aHNPs is substantially suppressed relative to the blended counterparts. The absence of physical aging at these loadings is independent of brush architecture (graft density or molecular weight of tethered chains) and indicates that the impact of chain tethering on effective bulk structural relaxation starts to appear at particle-particle surface separations on the order of the Kuhn length. Overall, these observations can be understood within the context of how three separate structural characteristics impact local segment density and relaxation processes: the dimension and architecture of the tethered polymer chains, the separation between NP surfaces, and the confinement imposed by chain tethering and space filling within the aHNP. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015
    Journal of Polymer Science Part B Polymer Physics 10/2015; 54. DOI:10.1002/polb.23931
  • [Show abstract] [Hide abstract]
    ABSTRACT: A mixture of two polymer materials, poly (9,9-dioctylfluorene) (F8), and one of the poly(para-phenylenevinylene) derivatives, superyellow (SY) have been used to make F81−x:SYx polymer blend system. Under a 3–5 ns pulsed-laser excitation, this system showed excellent optical properties with low threshold values of ≈14 µJ/cm2 and ≈8 µJ/cm2 for amplified spontaneous emission and optically pumped lasing, respectively. The proposed system was also electroluminescent and an interesting candidate for future research on polymer injection lasers.
    Journal of Polymer Science Part B Polymer Physics 10/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The influence of short-chain branching on the formation of single crystals at constant supercooling is systematically studied in a series of metallocene catalyzed high-molecular-weight polyethylene samples. A strong effect of short-chain branching on the morphology and structure of single crystals is reported. An increase of the axial ratio with short-chain branching content, together with a characteristic curvature of the (110) crystal faces are observed. To the best of our knowledge, this is the first time that this observation is reported in high-molecular-weight polyethylene. The curvature can be explained by a continuous increase in the step initiation—step propagation rates ratio with short-chain branching, that is, nucleation events are favored against stem propagation by the presence of chain defects. Micro-diffraction and WAXS results clearly indicate that all samples crystallize in the orthorhombic form. An increase of the unit cell parameter a0 is detected, an effect that is more pronounced than in the case of single crystals with ethyl and propyl branches. The changes observed are compatible with an expanded lattice due to the presence of branches at the surface folding. A decrease in crystal thickness with branching content is observed as determined from shadow measurements by TEM. The results are in agreement with additional SAXS results performed in single crystal mats and with indirect calorimetry measurements.
    Journal of Polymer Science Part B Polymer Physics 10/2015; DOI:10.1002/polb.23910
  • [Show abstract] [Hide abstract]
    ABSTRACT: Perfluorosulfonic-acid (PFSA) membranes are widely used as the solid electrolyte in electrochemical devices where their main functionalities are ion (proton) conduction and gas separation in a thermomechanically stable matrix. Due to prolonged operational requirements in these devices, PFSA membranes’ properties change with time due to hygrothermal aging. This paper studies the evolution of PFSA structure/property relationship changes during hygrothermal aging, including chemical changes leading to changes in ion-exchange capacity (IEC), nanostructure, water-uptake behavior, conductivity, and mechanical properties. Our findings demonstrate that with hygrothermal aging, the storage modulus increases, while IEC and water content decrease, consistent with the changes in nanostructure, that is, water- and crystalline-domain spacings inferred from small- and wide-angle X-ray scattering (SAXS/WAXS) experiments. In addition, the impact of aging is found to depend on the membrane's thermal prehistory and post-treatments, although universal correlations exist between nanostructural changes and water uptake. The findings have impact on understanding lifetime, durability, and use of these and related polymers in various technologies. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015
    Journal of Polymer Science Part B Polymer Physics 10/2015; DOI:10.1002/polb.23946
  • [Show abstract] [Hide abstract]
    ABSTRACT: The thermal reshaping of gold nanorods has been slowed by grafting a diblock copolymer [P(S-b-S-N3)] containing an outer polystyrene (PS) brush and a short, inner photo-cross-linkable PS-azide block. The P(S-b-S-N3)-Au NRs were dispersed in a PS thin film and reshaping was investigated using scanning electron microscopy and UV–Vis spectroscopy. For P(S-b-S-N3)-Au NRs in PS, the longitudinal surface plasmon resonance decreased from about 880 toward 750 nm upon annealing at 100 °C, 150 °C, and 200 °C. This blue shift increased in strength as temperature increased. However, this reshaping of P(S-b-S-N3)-Au NRs was slower than that of Au NRs grafted with a poly(ethylene glycol) brush that was dispersed in poly(methyl methacrylate). By slowing down reshaping at elevated temperature, polymer thin film devices that heat during use (e.g., polarization dependent filters) can exhibit a longer lifetime. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015
    Journal of Polymer Science Part B Polymer Physics 10/2015; DOI:10.1002/polb.23929
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structure, rheological response, and ionic conductivity of ABA brush block copolymer (BBCP) ion gels containing 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BMI][TFSI]) at polymer concentrations spanning 5-50 wt % (Φgel) were studied by small angle X-ray scattering, dynamic mechanical analysis, and AC impedance spectroscopy. Application of a hard sphere form factor and Percus-Yevick structure factor reveals trends in gel micellar structure as a function of BBCP molecular weight, A block volume fraction (ΦA), and Φgel. Viscoelastic properties are strongly dependent on end-block molar mass, with storage moduli ≤103 Pa at 25 °C. Impedance measurements reveal near liquid-like dynamics in the matrix phase as evidenced by conductivities near 1 mS/cm at 25 °C that decrease with increasing Φgel and ΦA. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015
    Journal of Polymer Science Part B Polymer Physics 10/2015; DOI:10.1002/polb.23927
  • [Show abstract] [Hide abstract]
    ABSTRACT: The impact of nanoconfinement introduced by nanoparticles on polymer crystallization has attracted extensive attention because it plays an important role in the ultimate properties of polymer nanocomposites. In this study, interfacial and spatial confinement effects of silica (SiO2) nanoparticles on the crystallization behaviors of poly(ethylene oxide) (PEO)/SiO2 composites were systematically investigated by changing the size and concentration of SiO2 in PEO matrix. The composites with high silica loadings exhibit two crystallization peaks of PEO as determined by differential scanning calorimetry. The first peak at 7–43 °C is related to the bulk PEO, while the second peak at −20 to −30 °C is attributed to the restricted PEO segments. Three-layer (amorphous, interfacial, and bulk) model is proposed to interpret the confined crystallization of PEO/SiO2 composites, which is supported by the results of thermogravimetric analysis and solid-state 1H nuclear magnetic resonance. In amorphous layer, most PEO segments are directly adsorbed on SiO2 surface via hydrogen bonding. The interfacial PEO layer, which is nonuniform, is composed of crystallizable loops and tails extending from amorphous layer. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015
    Journal of Polymer Science Part B Polymer Physics 10/2015; DOI:10.1002/polb.23915
  • [Show abstract] [Hide abstract]
    ABSTRACT: The effect of the C/O ratio of graphene oxide materials on the reinforcement and rheological percolation of epoxy-based nanocomposites has been studied. As-prepared graphene oxide (GO) and thermally-reduced graphene oxide (TRGO) with higher C/O ratios were incorporated into an epoxy resin matrix at loadings from 0.5 to 5 wt %. Tensile testing revealed good reinforcement of the polymer up to optimal loadings of 1 wt %, whereas agglomeration of the flakes at higher loadings caused the mechanical properties of the composites to deteriorate. The level of reduction (C/O) of the graphene oxide filler was found to influence the mechanical and rheological properties of the epoxy composites. Higher oxygen contents were found to lead to stronger interfaces between graphene and epoxy, giving rise to higher effective Young's moduli of the filler and thus to superior mechanical properties of the composite. The effective modulus of the GO in the nanocomposites was found to be up to 170 GPa. Furthermore, rheological analysis showed that highly oxidized graphene flakes did not raise the viscosity of the epoxy resin significantly, facilitating the processing considerably, of great importance for the development of these functional polymeric materials. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015
    Journal of Polymer Science Part B Polymer Physics 10/2015; DOI:10.1002/polb.23925
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this study, fracture toughness of nanocomposite hydrogels is quantified, and active mechanisms for dissipation of energy of nanocomposite hydrogels are ascertained. Poly(N,N-dimethylacrylamide) nanocomposite hydrogels are prepared by in situ free radical polymerization with the incorporation of Laponite, a hectorite synthetic clay. Transmission electron microscopy proves exfoliation of clay platelets that serve as multifunctional crosslinkers in the created physical network. Extraordinary high fracture energies of up to 6800 J m−2 are determined by the pure shear test approach, which shows that these soft and stretchable hydrogels are insensitive to notches. In contrast to single- and double-network hydrogels, dynamic mechanic analysis and stress relaxation experiments clarify that significant viscoelastic dissipation occurs during deformation of nanocomposite hydrogels. Similar to double-network hydrogels, crack tip blunting and plastic deformation also contribute to the observed massive fracture energies. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015
    Journal of Polymer Science Part B Polymer Physics 10/2015; DOI:10.1002/polb.23912
  • [Show abstract] [Hide abstract]
    ABSTRACT: The use of mixed solvents provided an effective way to control the self-assembly behavior and photophysical properties of a conjugated rod–coil block copolymer, poly(3-hexylthiophene)-b-poly(ethylene oxide) (P3HT-b-PEO). It was shown that the balance between the π–π stacking of the P3HT and microphase separation of the copolymer could be dynamically controlled and shifted by solvent blending. Depending on the mixed solvent ratio (i.e., chloroform/methanol, anisole/chloroform, or anisole/methanol), the copolymer chains experienced different kinetic pathways, yielding a series of nanostructures such as disordered wormlike pattern, densely packed nanofibrils, and isolated nanofibrils. With the varying solvent selectivity, the P3HT-b-PEO chains displayed a hybrid photophysical property depending on the competition between intrachain and interchain excitonic coupling, resulting in the transformation between J- and H-aggregation. Overall, this work offered an effective way to demonstrate the correlation and transformation between π–π stacking of P3HT and microphase separation, and how the conformation of P3HT chains influenced the photophysical properties of the copolymer during solvent blending. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015
    Journal of Polymer Science Part B Polymer Physics 10/2015; DOI:10.1002/polb.23943
  • [Show abstract] [Hide abstract]
    ABSTRACT: The role of nano-sized resin fillers on the fracture and viscoelastic behavior of silicones was examined in the context of thermal aging. Systems with different resin volume fractions and resin glass transition temperatures were compared. X-ray scattering patterns were collected over a wide range of q-values in order to provide insight into the physical structure of the silicone elastomers. Additionally, tensile, dynamic mechanical, and fracture tests were performed. Temperature shift factors obtained from the dynamic mechanical data were used to obtain master plots of the fracture toughness as a function of reduced crack velocity. The elastic modulus for each of the materials increased as a function of thermal aging time, and the high-temperature fracture behavior for each of the systems was reduced to values characteristic of unfilled systems after 14 days of aging at 200 °C. In order to obtain an accurate representation of the viscoelastic response of the materials in the megahertz frequency regime, quartz crystal resonators were used to measure mass changes and rheological properties after thermal aging. The results are consistent with a simple picture of dynamic heterogeneity, where high toughness requires that regions with different dynamic properties exist within the sample. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015
    Journal of Polymer Science Part B Polymer Physics 10/2015; DOI:10.1002/polb.23919
  • [Show abstract] [Hide abstract]
    ABSTRACT: Using molecular dynamics simulations we study blends of oligomers of 2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene, BTTT, and fullerene derivative based acceptors to understand the role of oligomer length and alkyl side chain (SC) length on the morphology of their blends. We use a validated coarse-grained model of BTTT and fullerene derivatives presented in recent work along with direct comparison of morphology between simulations and experiments. In this article, we predict computationally that short alkyl SCs (6 alkyl groups) decrease the propensity of fullerene derivative acceptors to intercalate between SCs on the BTTT backbone compared to longer alkyl SCs (9 or 12 alkyl groups), and as a result increase acceptor aggregation. The decreasing acceptor intercalation and increasing acceptor aggregation do not significantly impact the positional or orientational order of the BTTT backbones. However, the BTTT oligomer backbones order better with increasing SC length in both neat systems and in blends, with the blends exhibiting higher positional order than neat systems. While these qualitative trends are similar both in 2mer blends and 4mer blends, we see a larger extent of acceptor intercalation and as a result, smaller acceptor cluster sizes in the 4mer blends. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015
    Journal of Polymer Science Part B Polymer Physics 10/2015; DOI:10.1002/polb.23942
  • [Show abstract] [Hide abstract]
    ABSTRACT: In oil well treatments, such as matrix stimulations or water shut-off, it is often necessary to temporary isolate or protect productive zones with chemical diverting agents. In this work, a solution of peroxide crosslinked styrene-butadiene rubber (SBR) has been transformed to a self-degradable gel system by adding hydroperoxide as a degradation agent to the formulation. This oil-based self-degradable gel has been characterized by linear oscillatory rheometry. In situ and ex situ experiments were performed to evaluate the evolution of crosslinking and degradation reactions, including the liquid-solid transition. Relaxation time spectra were calculated from dynamic mechanical frequency sweeps. Structural changes in the polymer network were visible within the relaxation time spectra, since it qualitatively showed the contribution of local simple entanglements and chemical covalent bonds to the final rheological behavior. The influence of peroxide concentration, polymer concentration, hydroperoxide concentration, and temperature have been studied and described in terms of rheological changes. Finally, a hydrogen donor aromatic solvent was used as scavenger to retard both crosslinking and degradation reactions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015
    Journal of Polymer Science Part B Polymer Physics 10/2015; DOI:10.1002/polb.23918

  • Journal of Polymer Science Part B Polymer Physics 10/2015; DOI:10.1002/polb.23941
  • [Show abstract] [Hide abstract]
    ABSTRACT: The main goal of the present study was to produce insights from the atomistic modeling into the structural changes in elastomer-based polymer nanocomposites caused by the surface modifications of the filler particles, and by the crosslinking of the participating polymer matrix. The fully atomistic molecular-dynamics computer simulations of crosslinked (1,4) cis-polyisoprene (PI) films capped by amorphous silica substrates was set-up, in the presence of realistic coupling and covering agents. The PI film stratified structure has been studied in the proximity of the corresponding glass transition, by varying the degree of crosslinking and the PI film thickness. Some monomer ordering induced by the pristine (bare) silica disappeared almost completely in films with modified surfaces. The average monomer density increased with degree of crosslinking. As compared with PI bulk, the glass-transition temperature was slightly larger for highly crosslinked PI films with bare silica and surfaces with coupling agents, and increased with increasing confinement. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015
    Journal of Polymer Science Part B Polymer Physics 10/2015; DOI:10.1002/polb.23928
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on the growth and characterization of one-dimensional (1D) planar all-polymer photonic crystals (PhC) with high dielectric contrast (Δn = 0.3) prepared by spin coating using hyperbranched polyvinylsulfide polymers (HB-PVS) as high refractive index material and cellulose acetate as low refractive index material. Solution processable HB-PVS show a near ultraviolet absorption inducing an increased refractive index in the visible-near infrared (n = 1.68, λ = 1000 nm). HBPVS:Cellulose Acetate Distributed Bragg Reflectors show a very clear fingerprint of the photonic band gap possessing the expected polarized dispersion properties as a function of the incidence angle. Moreover, engineered microcavities tuned on the weak fluorescence spectrum of the HB-PVS show directional fluorescence enhancement effects due to spectral redistribution of the emission oscillator strength. The combination of all these properties testifies the high optical quality of the obtained photonic structures thus indicating HB-PVS as an interesting material for the preparation of such PhC. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015
    Journal of Polymer Science Part B Polymer Physics 10/2015; DOI:10.1002/polb.23932