Protein Expression and Purification Journal Impact Factor & Information

Publisher: Elsevier

Journal description

The power of modern molecular genetics to provide large quantities of proteins that were previously difficult to obtain has sparked an explosion of interest in both practical and theoretical aspects of protein purification. Protein Expression and Purification is dedicated to providing a forum for information about protein isolation based on conventional fractionation as well as techniques employing various molecular biological procedures to increase protein expression.

Current impact factor: 1.70

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.695
2013 Impact Factor 1.508
2012 Impact Factor 1.429
2011 Impact Factor 1.587
2010 Impact Factor 1.644
2009 Impact Factor 1.563
2008 Impact Factor 1.621
2007 Impact Factor 1.94
2006 Impact Factor 1.867
2005 Impact Factor 1.553
2004 Impact Factor 1.336
2003 Impact Factor 1.47
2002 Impact Factor 1.375
2001 Impact Factor 1.497
2000 Impact Factor 1.569
1999 Impact Factor 1.416
1998 Impact Factor 1.382
1997 Impact Factor 1.341
1996 Impact Factor 1.413
1995 Impact Factor 1.497
1994 Impact Factor 1.822

Impact factor over time

Impact factor

Additional details

5-year impact 1.62
Cited half-life 8.50
Immediacy index 0.30
Eigenfactor 0.01
Article influence 0.45
Website Protein Expression and Purification website
Other titles Protein expression and purification (Online), Protein expression and purification, Protein expression & purification
ISSN 1096-0279
OCLC 36951598
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Canavan disease (CD) is a neurological disorder caused by an interruption in the metabolism of N-acetylaspartate (NAA). Numerous mutations have been found in the enzyme that hydrolyzes NAA, and the catalytic activity of aspartoacylase is significantly impaired in CD patients. Recent studies have also supported an important role in CD for the enzyme that catalyzes the synthesis of NAA in the brain. However, previous attempts to study this enzyme had not succeeded in obtaining a soluble, stable and active form of this membrane-associated protein. We have now utilized fusion constructs with solubilizing protein partners to obtain an active and soluble form of aspartate N-acetyltransferase. Characterization of the properties of this enzyme has set the stage for the development of selective inhibitors that can lower the elevated levels of NAA that are observed in CD patients and potentially serve as a new treatment therapy.
    Protein Expression and Purification 11/2015; 119. DOI:10.1016/j.pep.2015.11.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Darbepoetin alfa is an engineered and hyperglycosylated analog of recombinant human erythropoietin (EPO) which is used as a drug in treating anemia in patients with chronic kidney failure and cancer. This study desribes the secretory expression of a codon-optimized recombinant form of darbepoetin alfa in Leishmania tarentolae T7-TR. Synthetic codon-optimized gene was amplified by PCR and cloned into the pLEXSY-I-blecherry3 vector. The resultant expression vector, pLEXSYDarbo, was purified, digested, and electroporated into the L. tarentolae. Expression of recombinant darbepoetin alfa was evaluated by ELISA, reverse-transcription PCR (RT-PCR), Western blotting, and biological activity. After codon optimization, codon adaptation index (CAI) of the gene raised from 0.50 to 0.99 and its GC% content changed from 56% to 58%. Expression analysis confirmed the presence of a protein band at 40 kDa. Furthermore, reticulocyte experiment results revealed that the activity of expressed darbepoetin alfa was similar to that of its equivalent expressed in Chinese hamster ovary (CHO) cells. These data suggested that the codon optimization and expression in L. tarentolae host provided an efficient approach for high level expression of darbepoetin alfa.
    Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.10.013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Soluble receptor for advanced glycation end products (sRAGE), a natural inhibitor of RAGE, is considered to be a putative therapeutic molecule for a variety of diseases and a biomarker for certain conditions. To further study the function of sRAGE, recombinant rat sRAGE (rrsRAGE) was expressed and produced in a eukaryotic system. The open reading frame of rat sRAGE was cloned downstream of the methanol-inducible alcohol oxidase promoter of pPICZαA vector, and Pichia pastoris strain X-33 was used as the host strain. The expression of rrsRAGE was achieved by fermentation in a 15-L bioreactor and the resulting fermentation broth was subjected to purification on a cation exchange chromatography column. The purification of rrsRAGE reached 95% after size exclusion chromatography(SEC). The bioactivity of the purified protein was confirmed in a SH-SY5Y cell proliferation assay. The biological function of the purified rrsRAGE protein rat CCl4-induced model was then examined. Treatment with rrsRAGE resulted in significantly lower liver fibrosis and lower serum level of ALT, suggesting that sRAGE prevent liver from injury and fibrosis. In conclusion, we achieved high-efficiency production of bioactive rrsRAGE in Pichia pastoris.
    Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.09.029

  • Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.11.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: A potential bacteriocin gene was isolated from 18575 ORFs by bioinformatics methods. It was named pln1, and cloned into pET32a. Then, it was expressed as a thioredoxin-Pln1 fusion protein in Escherichia coli BL21 (DE3). The fusion protein was purified by Ni-NTA, and thioredoxin was removed by enterokinase. Finally, Pln1was purified using a cation affinity column. The yields of fused and cleaved Pln1 peptides were 100∼110 mg/l and 9∼11 mg/l, respectively. Pln1 was stable in an acidic environment and at temperatures below 60°C, but was easily degraded under alkaline conditions and by protease treatment. The cleaved and purified Pln1 showed strong antimicrobial activity against gram-positive bacteria such as Micrococcus luteus CMCC 63202, Staphylococcus epidermidis, Lactococcus lactis NZ3900, Lactobacillus paracasei CICC 20241, and Listeria innocua CICC 10417. In particular, Pln1 had a better activity against methicillin-resistant S. epidermidis (MRSE) than nisin, thereby offering an attractive approach to counter bacterial antibiotic resistance.
    Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.11.008
  • [Show abstract] [Hide abstract]
    ABSTRACT: The availability of catalytically active peptidylglycine α-amidating monooxygenase (PAM) should provide the means to examine its potential use for the chemienzymatic synthesis of bioactive peptides for the purpose of pharmacological studies. Hypoglycemic activity is one of the most important features of insulin derivatives. Insulin glargine amide was found to show a time/effect profile which is distinctly more flat and thus more advantageous than insulin glargine itself. The aim of the study was to obtain recombinant PAM and use it for insulin analogue amidation. We stably expressed a recombinant PAM in CHO dhfr-cells in culture. Recombinant PAM was partially purified by fractional ammonium sulphate precipitation and ion-exchange chromatography. The enzyme was used to modify glycine-extended A22(G)-B31(K)-B32(R) human insulin analogue (GKR). Alpha-amidated insulin was analyzed by HPLC and mass spectrometry. Hypoglycemic activity of amidated and non-amidated insulin was compared. The pharmacodynamic effect was based on glucose concentration measurement in Wistar rats with hyperglycemia induced by streptozotocin. The overall glycemic profile up to 36 hours was evaluated after subcutaneous single dosing at a range of 2.5 - 7.5 U/kg b.w. The experiment on rats confirmed with a statistical significance (P < 0.05) hypoglycemic activity of GKR-NH2 in comparison to a control group receiving 0.9% NaCl. Characteristics for GKR-NH2 profile was a rather fast beginning of action (0.5-2.0 h) and quite prolonged return to initial values. GKR-NH2 is a candidate for a hypoglycemic drug product in diabetes care. In addition, this work also provides a valuable alternative method for preparing any other recombinant bioactive peptides with C-terminal amidation.
    Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.11.017
  • [Show abstract] [Hide abstract]
    ABSTRACT: G13 is a 19-residue cationic antimicrobial peptide derived from granulysin. In order to achieve high-level expression of G13 in Escherichia coli cells, and to reduce downstream processing costs, we introduced an Asp-Pro acid labile bond between the His-Patch thioredoxin and G13 and constructed the recombinant plasmid pThiohisA-DP-G13. The plasmid was transformed into E. coli BL21 (DE3). After induction with isopropyl-β-D-thiogalactopyranoside for 5h, the fusion protein accumulated up to 200mg/L in soluble form. The fusion protein was released by a high pressure homogenizer, cleaved using 13% acetic acid at 50 °C hydrolysis for 72 h. The recombinant G13 (r-G13) was then successively purified by fractional precipitation with ammonium sulfate and trichloroacetic acid, followed by one-step cation exchange chromatography. The purified r-G13 displayed a single band (about 2.2 kDa) as analyzed by Tris-Tricine buffered SDS-PAGE, and its precise molecular weight was confirmed using tandem mass spectrometry. Analysis of r-G13 by circular dichroism (CD) indicated that r-G13 contained predominantly β-sheet and random coil. Agar plate diffusion assay revealed that the r-G13 exhibited antibacterial activity against both Bacillus subtilis and E. coli.
    Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.11.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: A bioactive peptide precursor (BPP-1, 14.3 kDa/115AA), a newly designed polypeptide that may exert a potential antihypertensive effect in vivo, is composed of many different ACE inhibitory peptides and antioxidant peptides tandemly linked according to the restriction sites of gastrointestinal proteases. In this report, we present a novel method to obtain soluble BPP-1 in Escherichia coli using cationic elastin-like polypeptide and SUMO (cELP-SUMO) tags. The cELP-SUMO-tagged fusion protein was expressed in soluble form at 20°C for 20 h. After purification based on the inverse transition cycling (ITC) method, the purified cELP-SUMO-CFPP fusion protein was subsequently cleaved by a SUMO protease to release the mature BPP-1. After a subsequent simple salt precipitation process, approximately 167.2 mg of recombinant BPP-1 was obtained from 1 l of bacterial culture with at least 92% purity. The molecular mass (Mr) of the recombinant BPP-1 was confirmed by MALDI-TOF MS to equal 14,347. The purified BPP-1 was subjected to simulated gastrointestinal digestion, and the resulting hydrolysates exhibited notable ACE inhibitory and antioxidant activities in vitro. This report provides the first description of the soluble production of a bioactive peptide multimer with potential ACE inhibitory and antioxidant activities in Escherichia coli using a cELP-SUMO tag.
    Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.11.005
  • [Show abstract] [Hide abstract]
    ABSTRACT: The residues of organophosphorus pesticides bring serious impact on the environmental safety and people's health. Biodegradation of organophosphorus pesticides is recognized as an ideal method. An organophosphorus hydrolase (OPHCM) from Pseudomonas pseudoalcaligenes was synthesized and expressed in Pichia pastoris. The yield reached approximately 470 mg/l after a 6-d induction in shake flasks. To improve the enzyme production, we describe a novel approach to express OPHCM efficiently with a biobrick assembly method in vitro. Four recombinant plasmids containing 1-4 copies of ophcM-expressing cassettes were constructed and transformed into P. pastoris. Increasing the copy number of ophcM gene enhanced the expression level of OPHCM. The maximum yield and specific activity in P. pastoris harboring two-copy tandem ophcM -expressing cassettes reached 610 mg/l after a 6-d induction in shake flasks and 7.8 g/l in high-density fermentation with specific activity of 13.7 U/mg. The optimum pH and temperature of the recombinant OPHCM activity were 11.0 and 50 °C, respectively. In addition, the enzyme activity of recombinant OPHCM enhanced 57.6 % and 30.1 % in the presence of 1mM Cd(2+) and 5 % glycerol, respectively. The high expression and good properties of recombinant OPHCM provide an effective solution to solve the pollution of organophosphorus pesticides in the environment. Moreover, the approach for generating multicopy gene expressing vectors here will benefit the study for enhancing the expression level of genes of interest.
    Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.11.012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Enterotoxigenic E. coli (ETEC) are endemic pathogens in the developing world. They frequently cause illness in travelers, and are among the most prevalent causes of diarrheal disease in children. Pathogenic ETEC strains employ fimbriae as adhesion factors to bind the luminal surface of the intestinal epithelium and establish infection. Accordingly, there is marked interest in immunoprophylactic strategies targeting fimbriae to protect against ETEC infections. Multiple strategies have been reported for purification of ETEC fimbriae, however none is ideal. Purification has typically involved the use of highly virulent wild-type strains. We report here a simple and improved method to purify ETEC fimbriae, which was applied to obtain two different Class 5 fimbriae types of clinical relevance (CFA/I and CS4) expressed recombinantly in E. coli production strains. Following removal from cells by shearing, fimbriae proteins were purified by orthogonal purification steps employing ultracentrifugation, precipitation, and ion-exchange membrane chromatography. Purified fimbriae demonstrated the anticipated size and morphology by electron microscopy analysis, contained negligible levels of residual host cell proteins, nucleic acid, and endotoxin, and were recognized by convalescent human anti-sera.
    Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.11.007
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background: Alanine aminotransferase (ALT) has been used as a sensitive marker for liver injury in people and in preclinical toxicity studies. But measurement of ALT isoenzymes, ALT1 and ALT2, was reported to be of more diagnostic value. The aim of this study is to develop an ideal pair of anti-ALT1 monoclonal antibodies (MAbs) of high specificity and affinity, and subsequently prepare a Immunochromatographic lateral flow device (LFD) for rapid test of ALT1 in human serums. Methods: The complete coding sequence of ALT1 gene (1500 bp) was cloned from human hepatoma G2 cells (HepG2) and inserted into the expression vector pET-32a(+). ALT1 recombinant protein was routinely prepared by E. coli BL21 (DE3) expression and Ni(2+) affinity purification. Balb/c mice were immunized with purified ALT1 and the splenocytes were fused with Sp2/0 myeloma cells. The positive clones, verified by indirect enzyme-linked immunosorbent assay (ELISA) using purified ALT1, were subcloned to single clones by limiting dilution process. A MAb pair was selected from the obtained MAbs according the sandwich ELISA pairing results and then used for lateral flow device (LFD) production. After evaluation of the sensitivity and specificity, the LFD strips were employed to test human serum samples with known ALT activity levels. Results: ALT1 recombinant protein was expectedly prepared by expression and purification. A total of 8 stable clones that produced antibodies specifically recognizing ALT1 protein were developed. After sandwich ELISA pairing, an ideal pair of anti-ALT1 MAbs, designated as BD7 and DG3, were selected and proved to be of high specificity, titer and affinity. Based on the MAb pair, LFD strips specifically for ALT1 rapid test were subsequently prepared. The detection threshold of the LFD strips was 12 U/L. No cross reaction was found. Conclusions: The ALT1 LFD with high sensitivity and specificity was successfully developed. It is valuable for testing ALT1 protein in human sera and can be a beneficial complement for traditional ALT test.
    Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.11.016
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human extracellular superoxide dismutase (hEC-SOD) is an enzyme that scavenges reactive oxygen species (ROS). Because of its antioxidant activity, hEC-SOD has been used as a therapeutic protein to treat skin disease and arthritis in mammalian systems. In this study, codon-optimized hEC-SOD was expressed in tobacco (Nicotiana benthamiana L.) via a plant-based transient protein expression system. Plant expression binary vectors containing full-length hEC-SOD (f-hEC-SOD) and modified hEC-SOD (m-hEC-SOD), in which the signal peptide and heparin-binding domain were deleted, were constructed for the cytosolic-, endoplasmic reticulum (ER)-, and chloroplast-localizations in tobacco leaf mesophyll cells. The results demonstrated that f-hEC-SOD was more efficiently expressed in the cytosolic fractions than in the ER or chloroplasts of tobacco cells. Our data further indicated that differently localized f-hEC-SOD and m-hEC-SOD displayed SOD enzyme activities, suggesting that the hEC-SODs expressed by plants may be functionally active. The f-hEC-SOD was expressed up to 3.8% of the total leaf soluble protein and the expression yield was calculated to be 313.7 μg f-hEC-SOD per g fresh weight of leaf. Overall, our results reveal that it was possible to express catalytically active hEC-SODs by means of a transient plant expression system in tobacco leaf cells.
    Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.11.014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arabidopsis RabE1d subclass plays important plant-specific functions in plant growth and development, response to ethylene and defence to plant pathogen, besides their basic cellular role in membrane trafficking. In this study, we present the expression, purification, and characterization of the recombinant core domain of AtRabE1d13-185. AtRabE1d13-185 was successfully expressed in E. coli and purified via two-step nickel affinity chromatography followed by gel filtration, and identified single band in SDS-PAGE. The resultant protein was functionally active, as determined by interaction with guanine nucleotide by a fluorescence-based assay. The intrinsic tryptophan of AtRabE1d13-185 showed fluorescence resonance energy transfer (FRET) effect upon forming complex with fluorescent methylanthraniloyl (mant)-GDP, but quenched when binding with non-labelled guanine nucleotide. The association rate of mantGDP with RabE was determined to be 3.48×107s-1M-1. The dissociation rates of GDP and mantGDP from the complex with AtRabE1d13-185 were similar. The koff values were determined to be 4.02×10-4s-1 based on the FRET effect for the AtRabE1d13-185:GDP and 5.41×10-4s-1 for mantGDP excited directly.
    Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.11.013

  • Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.11.019

  • Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.11.018
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous studies have shown isoflavone aglycones to have more biological effects than their counterparts, isoflavone glycones. Some β-glucosidases can hydrolyze isoflavone glucosides to release aglycones, and discovery of these has attracted great interest. A glycoside hydrolase (GH) family 3 β-glucosidase (bgl2) gene from Neurospora crassa was heterologously expressed in Pichia pastoris with high purity. The recombinant BGL2 enzyme displayed its highest activity at pH 5.0 and 60 °C, and had its maximum activity against p-nitrophenyl-β-D-glucopyranoside (pNPG) (143.3±4.8 U/mg), followed by cellobiose (75.0±0.78 U/mg), gentiobiose (47.6±0.15 U/mg), p-nitrophenyl-β-d-cellobioside (pNPC) (40.1±0.87 U/mg), cellotriose (12.3±0.36 U/mg) and cellotetraose (9.0±0.14 U/mg). The kinetic parameters of Km and Vmax were 0.206±0.01 mM and 147.9±2.77 μM/mg/min for pNPG. The purified enzyme showed a heightened ability to convert the major soybean isoflavone glycosides (daidzin, genistin and glycitin) into their corresponding aglycone forms (daidzien, genistein and glycitein). With this activity against soybean isoflavone glycosides, BGL2 shows great potential for applications in the food, animal feed, and pharmaceutical industries.
    Protein Expression and Purification 11/2015; DOI:10.1016/j.pep.2015.11.010