Plasmid (Plasmid )

Publisher: Elsevier

Description

Plasmid, A Journal of Molecular Genetics with Emphasis on Plasmid Biology, is a premier journal in the field of molecular microbiology and biotechnology. The journal focuses on the biology of extrachromosomal genetic elements in both prokaryotic and eukaryotic systems, including their biological behavior, molecular structure, genetic function, gene products, and use as genetic tools. The journal features original research reports on movable genetic elements in prokaryotes and in eukaryotes, and publishes minireviews on various aspects of extrachromosomal gene systems and molecular microbiology.

Impact factor 1.76

  • Hide impact factor history
     
    Impact factor
  • 5-year impact
    1.55
  • Cited half-life
    0.00
  • Immediacy index
    0.33
  • Eigenfactor
    0.00
  • Article influence
    0.52
  • Website
    Plasmid website
  • Other titles
    Plasmid (Online), Plasmid
  • ISSN
    1095-9890
  • OCLC
    36951394
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Elsevier

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-print allowed on any website or open access repository
    • Voluntary deposit by author of authors post-print allowed on authors' personal website, arXiv.org or institutions open scholarly website including Institutional Repository, without embargo, where there is not a policy or mandate
    • Deposit due to Funding Body, Institutional and Governmental policy or mandate only allowed where separate agreement between repository and the publisher exists.
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months .
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PubMed Central after 12 months
    • Publisher last contacted on 18/10/2013
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: • We present the complete sequence of pColE3.• pColE3 is most closely related to a plasmid from enterohemorrhagic E. coli.• We used Phred DNA quality scores to infer the presence of single-stranded DNA.• We used DNA staining dyes to demonstrate the presence of single-stranded DNA that coexists with double-stranded DNA.• We demonstrate single-stranded DNA in other colicins but not in pColE1.• Single-stranded DNA colicins may represent a new subclass of rolling-circle replication plasmids.
    Plasmid 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ability to rapidly customize an expression vector of choice is a valuable tool for any researcher involved in high-throughput molecular cloning for protein overexpression. Unfortunately, it is common practice to amend or neglect protein targets if the gene that encodes the protein of interest is incompatible with the multiple-cloning region of a preferred expression vector. To address this issue, a method was developed to quickly exchange the multiple-cloning region of the popular expression plasmid pET-28 with a ligation-independent cloning cassette, generating pGAY-28. This cassette contains dual inverted restriction sites that reduce false positive clones by generating a linearized plasmid incapable of self-annealing after a single restriction-enzyme digest. We also establish that progressively cooling the vector and insert leads to a significant increase in ligation-independent transformation efficiency, demonstrated by the incorporation of a 10.3 kb insert into the vector. The method reported to accomplish plasmid reconstruction is uniquely versatile yet simple, relying on the strategic placement of primers combined with homologous recombination of PCR products in yeast.
    Plasmid 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The 89,977 bp nucleotide sequence of pACM1, isolated from a 1993 outbreak strain of cephalosporin-resistant Klebsiella oxytoca, has been completed and assigned GenBank accession number KJ541681. The plasmid has a single 31,842 bp mosaic multi-drug resistance-encoding (MDR) region comprising the mer resistance module of Tn1696, 2 integrons with a total of 7 cassettes, one complete copy each of IS1R and IS26, and the bla(SHV-5)-carrying Tn2003 (with defective IS26 termini), all within a Tn1721-like element inserted into the mucB gene of the IncL/M plasmid backbone. The Tn1721-Tn1696 combination resembles sequence found in the chromosomal MDR islands of some Acinetobacter baumannii isolates. Among the completely sequenced IncL/M resistance plasmids, the Tn1721-based MDR region is unique, but data from older studies suggest that this type of plasmid was widespread in the 1990s. Since resistance gene dosage is affected by plasmid copy number (PCN), we used a relatively simple new "efficiency-corrected" qPCR assay to measure the PCN of pACM1. There are approximately 3 copies per chromosome in an E. coli DH5α host, and 2 in the original K. oxytoca isolate. We could not find similar PCN data for other medically important plasmids for comparison. The study of this plasmid property and its effect on resistance levels should be facilitated in the future by the availability of qPCR instruments and complete genome sequences.
    Plasmid 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A mammary gland-specific expression vector p205C3 was constructed with the 5'- and 3'-flanking regions of β-lactoglobulin gene and the first intron of β-casein gene of Chinese dairy goat as regulatory sequences. Human lysozyme (hLYZ) cDNA from mammary gland was cloned into p205C3 and the recombinant vector was used to generate transgenic mice by microinjection. Based on the lysoplate assay, four female offspring of one male founder were detected expressing recombinant hLYZ in their milk at the levels of 5-200 mg/L, and the expressed protein had the same molecular weight as that of normal hLYZ. Besides mammary glands, ectopic expressions were also found in the spleens and the small intestines of the transgenic mice. Among the offspring, the female transgenic mice maintained and expressed the transgene stably with a highest expression level of 750 mg/L. Therefore, p205C3 could be used to develop animal mammary gland bioreactors expressing hLYZ.
    Plasmid 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the last decade regulatory RNAs have emerged as powerful tools to regulate the expression of genes both in prokaryotes and in eukaryotes. RNases, by degrading these RNA molecules, control the right amount of the regulatory RNAs, which is fundamental for an accurate regulation of gene expression in the cell. Remarkably the first antisense RNAs identified were plasmid-encoded and their detailed study was crucial for the understanding of prokaryotic antisense RNAs. In this review we highlight the role of RNases in the precise modulation of antisense RNAs that control plasmid replication, maintenance and transfer.
    Plasmid 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: This article describes a rapid, highly efficient and versatile method for seamlessly assembling multiple DNA fragments into a vector at any desired position. The inserted fragments and vector backbone were amplified by high-fidelity PCR containing 20 bp to 50 bp overlapping regions at 3' and/or 5' termini. These linearised fragments were equimolarly mixed, and then cyclised in a prolonged overlap extension PCR without adding primers. The resulting PCR products were DNA multimers that could be directly transformed into host strains, yielding the desired chimeric plasmid. The proposed method was illustrated by constructing an Escherichia coli co-expression vector. The feasibility of the method in Lactobacillus was further validated by assembling an E. coli-Lactobacillus shuttle vector. Results showed that three to four fragments could be simultaneously and precisely inserted in a vector in only two to three days using the proposed method. The acceptable transformation efficiency was determined through the tested host strains; more than 95% of the colonies were positive transformants. Therefore, the proposed method is sufficiently competent for high-efficiency insertion of multiple DNA fragments into a plasmid and has theoretically good application potential for gene cloning and protein expression because it is simple, easy to implement, flexible and yields highly positive clones.
    Plasmid 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Until recently, only two small regulatory RNAs encoded by lambdoid bacteriophages were know. These transcripts are derived from paQ and pO promoters. The former one is supposed to act as an antisense RNA for expression of the Q gene, encoding a transcription antitermination protein. The latter transcript, called oop RNA, was initially proposed to have a double role, in establishing expression of the cI gene and in providing a primer for DNA replication. Although the initially proposed mechanisms by which oop RNA could influence the choice between two alternative developmental pathways of the phage and the initiation of phage DNA replication were found not true, the pO promoter has been demonstrated to be important for both regulation of phage development and control of DNA replication. Namely, the pO-derived transcript is an antisense RNA for expression of the cII gene, and pO is a part of a dual promoter system responsible for regulation of initiation of DNA synthesis from the oriλ region. Very recent studies identified a battery of small RNAs encoded by lambdoid bacteriophages existing as prophages in chromosomes of enterohemorrhagic Escherichia coli strains. Some of them have very interesting functions, like anti-small RNAs.
    Plasmid 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasmids are self-replicating pieces of DNA that can help their hosts adapt to the environment through expression and dissemination of non-essential genes. Given that plasmids represent a metabolic burden to the host, mechanisms ensuring plasmid transmission to daughter cells are critical for their stable maintenance in the population. Here we review these mechanisms, focusing on two active partition strategies common to low-copy plasmids: Par1 and Par2. Both involve three components: an adaptor protein, a motor protein, and a sequence in the plasmid (the centromere) that is recognized by the adaptor protein. The centromere-bound adaptor nucleates polymerization of the motor, leading to filament formation, which can pull plasmids apart (Par1) or push them towards opposite poles of the cell (Par2). No such active partition mechanisms are known to occur in high copy number plasmids. In this case, vertical transmission is generally considered stochastic, due to the random distribution of plasmids in the cytoplasm. We discuss conceptual and experimental lines of evidence questioning the random distribution model and posit the existence of a mechanism for segregation in high copy number plasmids that moves plasmids to cell poles to facilitate transmission to daughter cells. This mechanism would involve chromosomally-encoded proteins and the plasmid origin of replication. Modulation of this proposed mechanism of segregation could provide new ways to enhance plasmid stability in the context of recombinant gene expression, which is limiting for large-scale protein production and for bioremediation.
    Plasmid 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Corynebacterium glutamicum is an important microorganism for production of amino acids in industrial fermentation. Suitable vectors are needed for metabolic engineering in C. glutamicum. Most available vectors used in C. glutamicum carry antibiotic resistant genes as a genetic labeling for rapid identification of recombinant strains, and antibiotics have to be added to maintain the vector when growing the cells. These vectors, though excellent for laboratory use, are not preferable choices for industry-scale fermentation. In this work, we developed a novel expression system for use in C. glutamicum, which do not require antibiotics when used for industrial fermentation. This system includes two vectors: the shuttle vector pJYW-4 for expression of genes and the vector pJYW-6 for deletion of the essential gene alr in C. glutamicum. The vector pJYW-4 contains a large multiple cloning site for cloning multiple genes and two selective markers: one is the kanamycin-resistant gene kan and the other is an essential gene alr. The selective marker kan facilitates molecular manipulation or fermentations in the laboratory, and the selection marker alr is good for use in industry-scale fermentation, allowing in vivo maintenance of the expression vector through auxotrophic complementation; therefore, the two selection markers in pJYW-4 make it useful for both laboratory research and industrial fermentation, and convenient to transfer valuable laboratory-developed strains into industrial production. This newly-constructed expression system was successfully used to increase L-valine production in C. glutamicum ATCC 14067, indicating its potential on developing amino acid-producing C. glutamicum strains.
    Plasmid 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Background Horizontal gene transfer (HGT) is a widespread process that enables the acquisition of genes and metabolic pathways in single evolutionary steps. Previous reports have described fitness costs of HGT, but have largely focused on the acquisition of relatively small plasmids. We have previously shown that a Pseudomonas syringae pv. lachrymans strain recently acquired a cryptic megaplasmid, pMPPla107. This extrachromosomal element contributes hundreds of new genes to P. syringae and increases total genomic content by approximately 18%. However, this early work did not directly explore transmissibility, stability, or fitness costs associated with acquisition of pMPPla107. Results Here we show that pMPPla107 is self-transmissible across a variety of diverse Pseudomonad strains, on both solid agar and within shaking liquid medium cultures, with conjugation dependent on a type IV secretion system. To our knowledge, this is the largest self-transmissible megaplasmids known outside of Sinorhizobium. This megaplasmid can be lost from all novel hosts although the rate of loss depends on medium type and genomic background. However, in contrast, pMPPla107 is faithfully maintained within the original parent strain (Pla107) even under direct negative selection during laboratory assays. These results suggest that Pla107 specific stabilizing mutations have occurred either on this strain's chromosome or within the megaplasmid. Lastly, we demonstrate that acquisition of pMPPla107 by strains other than Pla107 imparts severe (20%) fitness costs under competitive conditions in vitro. Conclusions We show that pMPPla107 is capable of transmitting and maintaining itself across multiple Pseudomonas species, rendering it one of the largest conjugative elements discovered to date. The relative stability of pMPPla107, coupled with extensive fitness costs, makes it a tractable model system for investigating evolutionary and genetic mechanisms of megaplasmid maintenance and a unique testing ground to explore evolutionary dynamics after HGT of large secondary elements.
    Plasmid 04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lentiviruses provide highly efficient gene delivery vehicles in both dividing and non-dividing cells. Lentiviral gene expression systems often employ a specific cell line that constitutively expresses a regulatory protein for inducible transgene expression. As one of such inducible expression systems the Tet-On system uses a cell line expressing reverse tetracycline-responsive transcriptional activator (rtTA). The rtTA protein binds to the tetracycline-responsive element (TRE) in the promoter and activates transcription of a transgene in a doxycycline-dependent manner. To establish a universal and instant regulatory system without generating Tet-On cell lines, the cDNAs of rtTA and a testing target gene (PPM1B) were cloned in the bi-directional TRE-containing promoters. Here, we examined whether a basal leaky expression of rtTA allows instantly inducible expression of both rtTA itself and the target gene, PPM1B in a single plasmid using the two mini-CMV promoters. Transient transfection of the lentiviral plasmids into human embryonic kidney HEK293T cells showed a significant induction of PPM1B expression in response to doxycycline, suggesting that these lentiviral plasmids can be used as an instantly inducible mammalian expression vector. However, the expression of rtTA by lentiviral transduction shows a minimal expression without a consistent response to doxycycline, suggesting that the utility of these lentiviral vectors is limited. A potential solution to overcome lentiviral transgene inactivation is proposed.
    Plasmid 04/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A method for the simultaneous replacement of a given gene by a target gene, leaving no genetic markers, has been developed. The method is based on insertional inactivation and double-crossover homologous recombination. With this method, the lysCT311I, fbp and ddh genes were inserted into C. glutamicum genome, and the pck, alaT and avtA genes were deleted. Mobilizable plasmids with lysCT311I, fbp and ddh cassettes and two homologous arms on the ends of pck, alaT and avtA were constructed, and then transformed into C. glutamicum. The target-expression cassettes were inserted in the genome via the first homologous recombination, and the genetic markers were removed via the second recombination. The target-transformants were sequentially screened from kanamycin-resistance and sucrose-resistance plates. The enzyme activities of transformants were stably maintained for 30 generations under non-selective culture conditions, suggesting that the integrated cassettes in host were successfully expressed and maintained as stable chromosomal insertions in C. glutamicum. The target-transformants were used to optimize the L-lysine production, showing that the productions were strongly increased because the selected genes were closely linked to L-lysine production. In short, this method can be used to construct amino acid high-producing strains with unmarked gene amplification and simultaneous deletion in genome.
    Plasmid 03/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The filamentous fungus Trichoderma reesei has received attention as a host for heterologous protein production because of its high secretion capacity and eukaryotic post-translational modifications. However, the heterologous production of proteins in T. reesei is limited by its high expression of proteases. The pH control strategies have been proposed for eliminating acidic, but not alkaline, protease activity. In this study, we verified the expression of a relatively major extracellular alkaline protease (GenBank accession number: EGR49466.1, named spw in this study) from 20 candidates through real-time polymerase chain reaction. The transcriptional level of spw increased about 136 times in response to bovine serum albumin as the sole nitrogen source. Additionally, extracellular protease activity was reduced by deleting the spw gene. Therefore, using this gene expression system, we observed enhanced production and stablity of the heterologous alkaline endoglucanase EGV from Humicola insolens using the Δspw strain as compared to the parental strain RUT-C30.
    Plasmid 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Insect resistance and herbicide tolerance are the dominant traits of commercialized transgenic cotton. In this study, we constructed a general standard reference plasmid for transgenic cotton detection. Target genes, including the cowpea trypsin gene cptI, the insect resistance gene cry1Ab/1Ac, the herbicide tolerance gene cp4-epsps, the Agrobacterium tumefaciens nopaline synthase (Nos) terminator that exists in transgenic cotton and part of the endogenous cotton SadI gene were amplified from plasmids pCPT1, pBT, pCP4 and pBI121 and from DNA from the nontransgenic cotton line K312, respectively. The genes cry1Ab/1Ac and cptI, as well as cp4-epsps and the Nos terminator gene, were ligated together to form the fusion genes cptI-Bt and cp4-Nos, respectively, by overlapping PCR. We checked the validity of genes Sad1, cptI-Bt and cp4-Nos by DNA sequencing. Then, positive clones of cptI-Bt, cp4-Nos and Sad1 were digested with the corresponding restriction enzymes and ligated sequentially into vector pCamBIA2300, which contains the CAMV 35S promoter and nptII gene, to form he reference plasmid pMCS. Qualitative detection showed that pMCS is a good positive control for transgenic cotton detection. Real-time PCR detection efficiencies with pMCS as a calibrator ranged from 94.35% to 98.67% for the standard curves of the target genes (R2 ⩾ 0.998). The relative standard deviation of the mean value for the known sample was 11.95%. These results indicate that the strategy of using the pMCS plasmid as a reference material is feasible and reliable for the detection of transgenic cotton. Therefore, this plasmid can serve as a useful reference tool for qualitative and quantitative detection of single or stacked trait transgenic cotton, thus paving the way for the identification of various products containing components of transgenic cotton.
    Plasmid 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Horizontal gene transfer plays an important role in the evolution of bacterial species, conferring new genetic traits on the recipient bacterium that extend its range of phenotypes and plasmids make important contributions to this process. However, the inappropriate expression of newly acquired genes may lead to a loss of competitive fitness, resulting in the elimination of the new gene-bacterium combination. It is thought that transcriptional silencing of horizontally acquired genes offers a route out of this dilemma and that nucleoid-associated proteins, especially those related to the H-NS protein, play a particularly important role in the silencing process. The discovery that many plasmids express orthologues of nucleoid-associated proteins adds an interesting dimension to current models of regulatory integration following lateral transfer of DNA. Other horizontally acquired genetic elements, such as genomic islands, also express nucleoid-associated proteins of their own. Here the interactions of H-NS-like nucleoid-associated proteins encoded by the core genome, genomic islands and plasmids are described.
    Plasmid 01/2014;