Journal of Fish Biology (J Fish Biol )

Publisher: Fisheries Society of the British Isles, Blackwell Publishing


The Journal of Fish Biology is a leading international journal for scientists engaged in all aspects of fish and fisheries research, both freshwater and marine. The journal publishes high-quality papers relevant to the central theme of fish biology and aims to bring together under one cover an overall picture of the research in progress and to provide international communication among researchers in many disciplines with a common interest in the biology of fish. Research Areas Include: Aquaculture; Behaviour; Biochemistry; Diseases; Distribution; Ecology; Genetics; Growth; Immunology; Migration; Morphology; Parasitology; Physiology; Pollution; Population studies; Reproduction; Taxonomy; Toxicology.

  • Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    Journal of Fish Biology website
  • Other titles
    Journal of fish biology (Online), Journal of fish biology
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Blackwell Publishing

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • Some journals impose embargoes typically of 6 or 12 months, occasionally of 24 months
    • no listing of affected journals available as yet
  • Conditions
    • See Wiley-Blackwell entry for articles after February 2007
    • Publisher version cannot be used
    • On author or institutional or subject-based server
    • Server must be non-commercial
    • Publisher copyright and source must be acknowledged with set statement ("The definitive version is available at ")
    • Articles in some journals can be made Open Access on payment of additional charge
    • 'Blackwell Publishing' is an imprint of 'Wiley-Blackwell'
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Continuous cell culture of a puffer fish Takifugu rubripes has been established for efficient delivery of exogenous genes or proteins to cultured fish cells. Transcription factor oct4 was chosen for transduction into cultured fish cells because of its conserved structure and function between fish and mammals. In this work, the T. rubripes oct4 gene was cloned and expressed in Escherichia coli as a recombinant protein by introducing cell-penetrating peptide (CPP) poly-arginine (11R) and 6His-tag at the C-terminus. After purification, recombinant proteins were added to the growth medium and incubated with T. rubripes spermary cells. Recombinant proteins that crossed the cell membrane were detected in the cytoplasm and nucleus by western blot and immunofluorescent observation. The function of transduced oct4 as a transcription factor in fish cells was confirmed by driving green fluorescent protein expression in the pEGFP-1 reporter construct with the conserved specific oct4-binding sequence from mouse Mus musculus. Taken together, 11R can be an efficient CPP in delivering fusion proteins to cultured fish cells.
    Journal of Fish Biology 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Feeding habits and the activity of digestive enzymes (total alkaline proteases, α-amylase and lipase) from dace Leuciscus leuciscus, roach Rutilus rutilus, Prussian carp Carassius auratus gibelio, perch Perca fluviatilis and pikeperch Sander lucioperca fry were studied in the Malye Chany Lake–Kargat Estuary (western Siberia, Russia). The diet of fry from all studied species was mainly composed of chironomid larvae and zooplanktonic organisms (i.e. cladocera and copepoda), whereas carnivorous species such as P. fluviatilis and S. lucioperca also preyed on fry from other fishes while detritus and microalgae were also important in the diet of ommivorous species. When comparing diet similarity (Sørensen–Dice index, QS) among fry at different stages of development, both omnivorous and carnivorous species showed a high level of similarity (0·67 < QS < 0·89 and 0·73 < QS < 0·89, respectively). Diet similarity values were in agreement with the overall digestive activity profile analysed by cluster analysis. Diet similarity suggested potential trophic competition when zooplanktonic and benthic prey began to decline towards autumn. The analysis of pancreatic digestive enzymes revealed a correlation among their activities and fry feeding habits with α-amylase:total proteases (A:P) values higher than 1 in omnivorous species and lower (A:P ≤ 1) in carnivorous species.
    Journal of Fish Biology 09/2014;
  • Journal of Fish Biology 09/2014; 85(3).
  • [Show abstract] [Hide abstract]
    ABSTRACT: On 27 October 2013, a Rhincodon typus was apparently chased by a group of Caranx ignobilis into nearshore waters near Green Island (Ludao), east of Taiwan. A fisherman brought it back to port where it was kept in a small sea pen until release. The R. typus was 78 cm total length, and was tagged and released on 29 October 2013.
    Journal of Fish Biology 09/2014;
  • Journal of Fish Biology 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to test the hypothesis that hatchery brown trout Salmo trutta smolts, with 50% reduced or no feeding over the last 5 months before release, were more likely to migrate to the sea than individuals with standard feeding ratios. The juvenile fish were divided into three groups 176 days before release: (A) with no feeding, (B) with 50% and (C) with 100% feeding. To study their seaward migration, 40 fish from each feeding group were tagged with acoustic transmitters and tracked by automatic listening stations in the River Nidelva, Trondheim, Norway, its estuary and in the nearest marine environment. At the time of release, mean condition factor was significantly lower in group A and the fish from groups A and B had higher levels of Na+, K+-ATPase. Significantly more fish from group A migrated to the sea, but the rate of downstream progression from release to the estuary did not differ between the three groups. In conclusion, the S. trutta smolts with no access to food in the last 176 day before release were more likely to migrate to the sea. Fish from all three feeding groups, however, appeared to smoltify and had the same rate of downstream progression to the estuary. This indicates that differences in migratory behaviour between individuals from the three feeding groups begin from the time when the fish reach saline waters. It is suggested that feeding in hatcheries has to be greatly reduced (by 50% or more) over several months to have a pronounced effect on the migratory behaviour in S. trutta.
    Journal of Fish Biology 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Laboratory behavioural observation and computational fluid dynamics (CFD) analysis were conducted to examine whether the movement of the elongated dorsal and pelvic spines changed the hydrodynamic drag in white-streaked grouper Epinephelus ongus larvae. The behavioural observation in the tank revealed that the larvae extended the dorsal and pelvic spines during passive transport and retracted during swimming; the angles of the dorsal and pelvic spines in relation to the anteroposterior axis were larger during the passive transport (mean ± s.d. = 28·84 ± 14·27 and 20·35 ± 15·05°) than those during the swimming (mean ± s.d. = 2·59 ± 5·55 and 0·32 ± 6·49°). The CFD analysis indicated that the relative hydrodynamic drag acting on the larvae was approximately 1·25 times higher when the spines were extended (passive transport) than when the spines were retracted (swimming), suggesting that the E. ongus larvae have an ability to adjust their hydrodynamic drag depending on the behavioural context.
    Journal of Fish Biology 08/2014;
  • Journal of Fish Biology 08/2014; 85(2).
  • Journal of Fish Biology 08/2014; 85(2).
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study employed a combination of otolith microchemistry to indicate the recent habitat use, and plasma concentrations of the hormone insulin-like growth factor 1 (IGF1) as an index of recent growth rate, to demonstrate differences in growth and habitat use by Dolly Varden Salvelinus malma occupying both freshwater and estuarine habitats in south-west Alaska. Extensive sampling in all habitats revealed that fish had higher IGF1 levels in estuarine compared to lake habitats throughout the summer, and that the growth rates in different habitats within the estuary varied seasonally. In addition, otolith microchemistry indicated differentiation in estuarine habitat use among individual S. malma throughout summer months. Although growth in the estuary was higher than in fresh water in nearly all sites and months, the benefits and use of the estuarine habitats varied on finer spatial scales. Therefore, this study further illustrates the diverse life histories of S. malma and indicates an evaluation of the benefits of marine waters needs to include sub-estuary scale habitat use.
    Journal of Fish Biology 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The goals of this project were to determine the daily, seasonal and spatial patterns of red grouper Epinephelus morio sound production on the West Florida Shelf (WFS) using passive acoustics. An 11 month time series of acoustic data from fixed recorders deployed at a known E. morio aggregation site showed that E. morio produce sounds throughout the day and during all months of the year. Increased calling (number of files containing E. morio sound) was correlated to sunrise and sunset, and peaked in late summer (July and August) and early winter (November and December). Due to the ubiquitous production of sound, large-scale spatial mapping across the WFS of E. morio sound production was feasible using recordings from shorter duration-fixed location recorders and autonomous underwater vehicles (AUVs). Epinephelus morio were primarily recorded in waters 15–93 m deep, with increased sound production detected in hard bottom areas and within the Steamboat Lumps Marine Protected Area (Steamboat Lumps). AUV tracks through Steamboat Lumps, an offshore marine reserve where E. morio hole excavations have been previously mapped, showed that hydrophone-integrated AUVs could accurately map the location of soniferous fish over spatial scales of <1 km. The results show that passive acoustics is an effective, non-invasive tool to map the distribution of this species over large spatial scales.
    Journal of Fish Biology 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ovarian differentiation, morphogenesis and expression of some putative gonadal development-related genes were analysed in the ricefield eel Monopterus albus, a protogynous hermaphroditic teleost with a single elongate ovary. At c. 1 day post-hatching (dph), the gonadal ridge was colonized with primordial germ cells (PGCs) at the periphery and transformed into the gonadal primordium, which appeared to contain two germinal epithelia. At c. 7 dph, four ovarian cavities appeared in the gonadal tissue with two in each germinal epithelial compartment, and the indifferent gonad might have begun to differentiate into the ovary. The oocytes at the leptotene stage in meiosis I appeared at c. 14 dph, and oocytes at the diplotene stage at c. 30 dph. As development proceeded, the connective tissue separating the two germinal epithelia disappeared, and two of the four ovarian cavities collapsed into one. At 60 dph, the gonad had already taken the shape as observed in the adults. One outer and two inner ovarian cavities could be easily recognized, with slightly basophilic primary growth oocytes usually residing close to the outer ovarian cavity. The expression of cyp19a1a and erb in the early gonad was detected at 6 dph. The abundant expression of foxl2 coincided with the up-regulation of cyp19a1a at 8 dph onwards. The expression of dmrt1 isoforms was not detectable until 8 dph for dmrt1a and dmrt1b and until 33 dph for dmrt1d. The earlier appearance of cyp19a1a compared to dmrt1 transcripts in the indifferent gonad may contribute to the initial differentiation of the gonad towards the ovary in M. albus.
    Journal of Fish Biology 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The aim of this study was to determine and compare habitat preferences for male and female adult and juvenile White's seahorse Hippocampus whitei and assess their movements and site fidelity over 4 years. Data were collected from three sites along 1·5 km of estuarine shoreline in Port Stephens, New South Wales, Australia, from 2006 to 2009 using H. whitei that had been tagged with visible implant fluorescent elastomer. Relative availability of 12 habitats and habitat preferences of H. whitei was determined, based on the habitat that H. whitei used as a holdfast. Hippocampus whitei occurred in nine different habitats; adults preferred sponge and soft coral Dendronephthya australis habitats with no difference between male and female habitat preferences whilst juveniles preferred gorgonian Euplexaura sp. habitat. There was a significant preference by adults for D. australis colonies with height >40 cm and avoidance of colonies <20 cm. Neither adults nor juveniles used sand or the seagrasses Zostera muelleri subsp. capricorni and Halophila ovalis. Hippocampus whitei showed cryptic behaviour with c. 50% of adult sightings cryptic and c. 75% for juveniles with crypsis occurring predominantly in Sargassum sp. for adults and Euplexaura sp. habitat for juveniles. Within sites, females moved significantly longer distances (maximum of 70 m) than males (maximum of 38 m) over 20 months. Strong site fidelity was displayed by H. whitei with males persisting at the same site for up to 56 months and females for 49 months and no H. whitei moved between sites. The longest period that an H. whitei was recorded on the same holdfast was 17 months for a male and 10 months for a female. As this species displays strong site fidelity, specific habitat preferences and has a limited distribution, future management needs to minimize the risk of habitat disturbance as loss of key habitats could have a negative effect on species abundance and distribution.
    Journal of Fish Biology 08/2014;

Related Journals