Journal of Environmental Management (J Environ Manag )

Publisher: Elsevier


The Journal of Environmental Management publishes papers on all aspects of management and use of the environment, both natural and man-made. As governments and the general public become more keenly aware of the critical issues arising from man's use of his environment, the journal aims to provide a forum for the discussion of environmental problems around the world and for the presentation of management results. It is aimed not only at the environmental manager, but at everyone concerned with the wise use of environmental resources. The journal tries particularly to publish examples of the use of modern mathematical and computer techniques and encourages contributions from the developing countries in the Third World.

  • Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    Journal of Environmental Management website
  • Other titles
    Journal of environmental management (Online), Journal of environmental management
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Pre-print allowed on any website or open access repository
    • Voluntary deposit by author of authors post-print allowed on authors' personal website, or institutions open scholarly website including Institutional Repository, without embargo, where there is not a policy or mandate
    • Deposit due to Funding Body, Institutional and Governmental policy or mandate only allowed where separate agreement between repository and the publisher exists.
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months .
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PubMed Central after 12 months
    • Publisher last contacted on 18/10/2013
  • Classification
    ​ green

Publications in this journal

  • Journal of Environmental Management 12/2014; 145:147-156.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Assessing the value of fire planning alternatives is challenging because fire affects a wide array of ecosystem, market, and social values. Wildland fire management is increasingly used to address forest restoration while pragmatic approaches to assessing the value of fire management have yet to be developed. Earlier approaches to assessing the value of forest management relied on connecting site valuation with management variables. While sound, such analysis is too narrow to account for a broad range of ecosystem services. The metric fire regime condition class (FRCC) was developed from ecosystem management philosophy, but it is entirely biophysical. Its lack of economic information cripples its utility to support decision-making. We present a means of defining and assessing the deviation of a landscape from its desired fire management condition by re-framing the fire management problem as one of derived demand. This valued deviation establishes a performance metric for wildland fire management. Using a case study, we display the deviation across a landscape and sum the deviations to produce a summary metric. This summary metric is used to assess the value of alternative fire management strategies on improving the fire management condition toward its desired state. It enables us to identify which sites are most valuable to restore, even when they are in the same fire regime condition class. The case study site exemplifies how a wide range of disparate values, such as watershed, wildlife, property and timber, can be incorporated into a single landscape assessment. The analysis presented here leverages previous research on environmental capital value and non-market valuation by integrating ecosystem management, restoration, and microeconomics
    Journal of Environmental Management 08/2014; 141:190-200.
  • Journal of Environmental Management 06/2014; 138:1-96.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Biopolymers are considered a potential alternative to conventional chemical polymers because of their ease of biodegradability, high efficiency, non-toxicity and non-secondary pollution. Recently, extracellular polymeric substances (EPS, biopolymers produced by the microorganisms) have been recognised by many researchers as a potential flocculent for their applications in various water, wastewater and sludge treatment processes. In this context, literature information on EPS is widely dispersed and is very scarce. Thus, this review marginalizes various studies conducted so far about EPS nature-production-recovery, properties, environmental applications and moreover, critically examines future research needs and advanced application prospective of the EPS. One of the most important aspect of chemical composition and structural details of different moieties of EPS in terms of carbohydrates, proteins, extracellular DNA, lipid and surfactants and humic substances are described. These chemical characteristics of EPS in relation to formation and properties of microbial aggregates as well as degradation of EPS in the matrix (biomass, flocs etc) are analyzed. The important engineering properties (based on structural characteristics) such as adsorption, biodegradability, hydrophilicity/hydrophobicity of EPS matrix are also discussed in details. Different aspects of EPS production process such as bacterial strain maintenance; inoculum and factors affecting EPS production were presented. The important factors affecting EPS production include growth phase, carbon and nitrogen sources and their ratio, role of other nutrients (phosphorus, micronutrients/trace elements, and vitamins), impact of pH, temperature, metals, aerobic versus anaerobic conditions and pure and mixed culture. The production of EPS in high concentration with high productivity is essential due to economic reasons. Therefore, the knowledge about all the aspects of EPS production (listed above) is highly essential to formulate a logical and scientific basis for the research and industrial activities. One of the very important issues in the production/application/biodegradation of EPS is how the EPS is extracted from the matrix or a culture broth. Moreover, EPS matrix available in different forms (crude, loosely bound, tightly bound, slime, capsular and purified) can be used as a bioflocculant material. Several chemical and physical methods for the extraction of EPS (crude form or purified form) from different sources have been analyzed and reported. There is ample information available in the literature about various EPS extraction methods. Flocculability, dewaterability and biosorption ability are the very attractive engineering properties of the EPS matrix. Recent information on important aspects of these properties qualitatively as well as quantitatively has been described. Recent information on the mechanism of flocculation mediated by EPS is presented. Potential role of EPS in sludge dewatering and biosorption phenomenon has been discussed in details. Different factors influencing the EPS ability to flocculate and dewaterability of different suspensions have been included. The factors considered for the discussion are cations, different forms of EPS, concentration of EPS, protein and carbohydrate content of EPS, molecular weight of EPS, pH of the suspension, temperature etc. These factors were selected for the study based upon their role in the flocculation and dewatering mechanism as well the most recent available literature findings on these factors. For example, only recently it has been demonstrated that there is an optimum EPS concentration for sludge flocculation/dewatering. High or low concentration of EPS can lead to destabilization of flocs. Role of EPS in environmental applications such as water treatment, wastewater flocculation and settling, colour removal from wastewater, sludge dewatering, metal removal and recovery, removal of toxic organic compounds, landfill leachate treatment, soil remediation and reclamation has been presented based on the most recent available information. However, data available on environmental application of EPS are very limited. Investigations are required for exploring the potential of field applications of EPS. Finally, the limitations in the knowledge gap are outlined and the research needs as well as future perspectives are highlighted.
    Journal of Environmental Management 06/2014; 144.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Geochemical mobility of Hg(II) species is strongly affected by the interactions of these compounds with naturally occurring adsorbents such as humic acids, clay minerals, oxides, etc. Interactions among these sorbents affect their affinity for Hg(II) and a full understanding of these processes is still lacking. The present work describes the influence of a humic acid (HA) sample on the adsorption of Hg(II) by vermiculite (VT). Adsorption isotherms were constructed to evaluate the affinity of Hg(II) by VT, HA, VT modified with humic acid (VT-HA), and VT-HA in presence of soluble humic acid (VT-HA + HA). All experiments were made at pH 6.0 ± 0.1 in 0.02 M NaNO3 and 25.0 ± 0.5 °C for initial Hg(II) concentrations from 1.0 to 100 μM. Determinations of Hg(II) were made by square wave voltammetry automated by sequential injection analysis, an approach that enables the determination of the free plus labile fractions of Hg(II) in HA suspensions without the need for laborious separation steps. The adsorption isotherms were fitted to Langmuir and Freundlich equations, showing that HA was the material with the higher adsorption capacity (537 ± 30 μmol g(-1)) in comparison with VT and VT-HA (44 ± 3 and 51 ± 11 μmol g(-1), respectively). Adsorption order was HA > VT-HA + HA > VT = VT-HA. At pH 6.0 the interaction of HA with VT is weak and only 14% of C initially added to the suspension was effectively retained by the mineral. Desorption of Hg(II) in acidic medium (0.05 M HCl) was higher in binary (VT-HA) and ternary (VT-HA + HA) systems in comparison with that of VT and HA alone, suggesting that interactions between VT and HA are facilitated in acidic medium, weakening the binding to Hg(II).
    Journal of Environmental Management 05/2014; 143C:1-7.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The study area, located in the western side of Kerala State, South India, is a part of Vembanad-Kol wetlands - the largest estuary in India's western coastal wetland system and one of the Ramsar Sites of Kerala. Major portion of this estuary comes under the Ernakulam district which includes the Cochin City - the business and Industrial hub of Kerala, which has seen fast urbanization since independence (1947). Recently, this region is subjected to a characteristic fast urban sprawl, whereas, the estuarine zone is subjected to tremendous land use/land cover changes (LULC). Periodic monitoring of the estuary is essential for the formulation of viable management options for the sustainable utilization of this vital environmental resource. Remote sensing coupled with GIS applications has proved to be a useful tool in monitoring wetland changes. In the present study, the changes this estuarine region have undergone from 1944 to 2009 have been monitored with the help of multi-temporal satellite data. Estuarine areas were mapped with the help of Landsat MSS (1973), Landsat ETM (1990) and IRS LISS-III (1998 and 2009) using visual interpretation and digitization techniques in ArcGIS 9.3 Environment. The study shows a progressive decrease in the estuarine area, the reasons of which are identified chronologically.
    Journal of Environmental Management 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A majority of well pads for unconventional gas wells that are drilled into the Marcellus shale (northeastern USA) consist of multiple wells (in some cases as many as 12 wells per pad), yet the influence of the evolution of well pad development on the extent of environmental violations and wastewater production is unknown. Although the development of multi-well pads (MWP) at the expense of single well pads (SWP) has been mostly driven by economic factors, the concentrated nature of drilling activities from hydraulic fracturing and horizontal drilling operations on MWP suggests that MWP may create less surface disturbance, produce more volumes of wastewater, and generate more environmental violations than SWP. To explore these hypotheses, we use geospatial techniques and statistical analyses (i.e., regression and Mann-Whitney tests) to assess development of unconventional shale gas wells, and quantify environmental violations and wastewater volumes on SWP and MWP in Pennsylvania. The analyses include assessments of the influence of different types of well pads on potential, minor and major environmental events. Results reveal that (a) in recent years, a majority of pads on which new wells for unconventional gas were drilled are MWP, (b) on average, MWP have about five wells located on each pad and thus, had the transition to MWP not occurred, between two and four times as much land surface disturbance would have occurred per year if drilling was relegated to SWP, (c) there were more environmental violations on MWP than SWP, but when the number of wells were taken into account, fewer environmental violations per well were observed on MWP than on SWP, (d) there were more wastewater and recycled wastewater volumes per pad and per well produced on MWP than on SWP, and (e) the proportion of wastewater that was recycled was higher on MWP than SWP. This study sheds light on how the evolution from SWP to MWP has influenced environmental violations and wastewater production in a field that has undergone rapid development in recent years.
    Journal of Environmental Management 05/2014; 142C:36-45.