Journal of Colloid and Interface Science (J Colloid Interface Sci)

Publisher: Elsevier

Journal description

Publishing original research on fundamental principles and their applications, the Journal of Colloid and Interface Science is concerned with the work of investigators in relevant areas of chemistry, physics, engineering, biology, and applied mathematics. The journal features original research contributions from university, government, and industrial laboratories worldwide; book reviews; and letters to the Editor.

Current impact factor: 3.37

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 3.368
2013 Impact Factor 3.552
2012 Impact Factor 3.172
2011 Impact Factor 3.07
2010 Impact Factor 3.066
2009 Impact Factor 3.019
2008 Impact Factor 2.443
2007 Impact Factor 2.309
2006 Impact Factor 2.233
2005 Impact Factor 2.023
2004 Impact Factor 1.784
2003 Impact Factor 1.582
2002 Impact Factor 1.466
2001 Impact Factor 1.53
2000 Impact Factor 1.494
1999 Impact Factor 1.614
1998 Impact Factor 1.679
1997 Impact Factor 1.646
1996 Impact Factor 1.864
1995 Impact Factor 1.558
1994 Impact Factor 1.62
1993 Impact Factor 1.499
1992 Impact Factor 1.42

Impact factor over time

Impact factor

Additional details

5-year impact 3.64
Cited half-life 8.90
Immediacy index 0.83
Eigenfactor 0.06
Article influence 0.83
Website Journal of Colloid and Interface Science website
Other titles Journal of colloid and interface science (Online), Journal of colloid and interface science, Colloid and interface science
ISSN 1095-7103
OCLC 36935837
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Dispersed systems are important in many applications in a wide range of industries such as the petroleum, pharmaceutical and food industries. Therefore the ability to control and non-invasively measure the physical properties of these systems, such as the dispersed phase size distribution, is of significant interest, in particular for concentrated systems, where microscopy or scattering techniques may not apply or with very limited output quality. In this paper we show how reciprocal space data acquired using both 1D magnetic resonance imaging (MRI) and 2D X-ray micro-tomographic (X-ray μCT) data can be analysed, using a Bayesian statistical model, to extract the sphere size distribution (SSD) from model sphere systems and dispersed food foam samples. Glass spheres-in-xanthan gels were used as model samples with sphere diameters (D) in the range of 45μm⩽D⩽850μm. The results show that the SSD was successfully estimated from both the NMR and X-ray μCT with a good degree of accuracy for the entire range of glass spheres in times as short as two seconds. After validating the technique using model samples, the Bayesian sphere sizing method was successfully applied to air/water foam samples generated using a microfluidics apparatus with 160μm⩽D⩽400μm. The effect of different experimental parameters such as the standard deviation of the bubble size distribution and the volume fraction of the dispersed phase is discussed.
    Journal of Colloid and Interface Science 01/2016; 462:110-122. DOI:10.1016/j.jcis.2015.09.066
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hybrid materials containing iron oxides based on macroporous and gel-type sulfonic and carboxylic cation exchangers as supporting materials were obtained. Multiple factors, including the kind of functional groups, ion exchange capacity, and polymer matrix type (chemical constitution and porous structure), affected the amount of iron oxides introduced into their matrix (7.8-35.2% Fe). Products containing the highest iron content were obtained using carboxylic cation exchangers, with their inorganic deposit being mostly a mixture of iron(III) oxides, including maghemite. Obtained hybrid polymers were used for removal of sulfides from anoxic aqueous solutions (50-200mgS(2-)/dm(3)). The research showed that the form (Na(+) or H(+)) of ionic groups of hybrid materials had a crucial impact on the sulfide removal process. Due to high iron oxide content (35% Fe), advantageous chemical constitution and porous structure, the highest removal efficiency (60mgS(2-)/g) was exhibited by a hybrid polymer obtained using a macroporous carboxylic cation exchanger as the host material. The process of sulfide removal was very complex and proceeded with heterogeneous oxidation, iron(III) oxide reductive dissolution and formation of sulfide oxidation and precipitation products such as iron(II) sulfides, thiosulfates and polysulfides. Copyright © 2015 Elsevier Inc. All rights reserved.
    Journal of Colloid and Interface Science 12/2015; 460:154-163. DOI:10.1016/j.jcis.2015.08.035
  • [Show abstract] [Hide abstract]
    ABSTRACT: Diffusiophoretic motion, the migration of a colloidal particle in response to an externally applied solute concentration gradient, is investigated theoretically in this study for an isolated charged porous sphere suspended in an unbounded medium of electrolyte solution. The porous sphere is treated as a Brinkman medium with a uniformly distributed fixed charge density. The resulted general electrokinetic equations adopting the full nonlinear Poisson equation are solved numerically with a pseudo-spectral method based on Chebyshev polynomials. In particular, the convection contribution of the ion flux is taken into account properly as well. Key parameters of electrokinetic interest are examined for their respective effect on the particle motion. The particle mobility is much smaller in general than the analytical prediction neglecting the convection-induced double layer polarization effect, which is by far the most important factor in determining the porous particle motion. A less charged particle may actually move faster than a highly charged one due to this effect. Visual demonstration of the polarization is provided. Formation of a separate axisymmetric vortex flow is be responsible for the observation that a particle may reverse its direction of motion across a threshold permeability. This implies that a porous polyelectrolyte (like a protein or a DNA) assuming a random coil conformation may tango back and forth as it makes gyrations in diffusiophoretic motion. Copyright © 2015 Elsevier Inc. All rights reserved.
    Journal of Colloid and Interface Science 12/2015; 459:273-83. DOI:10.1016/j.jcis.2015.08.002
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, well defined LaOF crystals with multiform morphologies were first prepared via the urea-based precipitation method followed by a heat treatment. The morphologies of the LaOF samples, including nanospheres and nanorods, can be easily modulated by changing the fluorine sources. XRD, FT-IR, SEM, TEM, and emission spectra were used to characterize the prepared samples. Under ultraviolet excitation, the LaOF:Ln(3+) nanospheres display the characteristic f-f transitions of Ln(3+) (Ln=Eu, Tb) ions and give bright red, and green emissions, respectively. Furthermore, by codoping the Tb(3+) and Eu(3+) ions into LaOF host and varying the doping concentration of the Eu(3+) ions, multicolor tunable emissions have been obtained under the irradiation of 379nm. These results show this material may have potential applications in field-emission displays.
    Journal of Colloid and Interface Science 12/2015; 460:273-280. DOI:10.1016/j.jcis.2015.09.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Layered double hydroxide (LDH) nanoparticles have excellent anion-intercalating property, and their potential as theranostic nanovectors is high. However, understanding of the control of the mean particle size (MPS) and achievement of monodispersed particle size distribution (PSD) remains elusive. Herein, with the aid of statistical design of experiments on a model system of Cl(-)-intercalated (Zn, Al)-LDH, controlled synthesis of single crystalline nanoparticles using the coprecipitation method followed by hydrothermal treatment (HT) was achieved in three steps. First, a 2(4-1) design enabled the identification of influential parameters for MPS (i.e., salt concentration, molar ratio of carbonate to aluminum, solution addition rate, and interaction between salt concentration and stirring rate) and PSD (i.e., salt concentration and stirring rate), as well as the optimum coprecipitation conditions that result in a monodispersed PSD (i.e., low salt concentration and high stirring rate). Second, a preliminary explanation of the HT was suggested and the optimum HT conditions for obtaining ideal Gaussian PSD with chi-squared (χ(2))<3 were found to be 85°C for 5h. Third, using a central composite design, a quantitative MPS model, expressed in terms of the significant factors, was developed and experimentally verified to synthesize nearly monodispersed LDH nanoparticles with MPS ∼200-500nm. Copyright © 2015 Elsevier Inc. All rights reserved.
    Journal of Colloid and Interface Science 12/2015; 459:264-72. DOI:10.1016/j.jcis.2015.07.073
  • [Show abstract] [Hide abstract]
    ABSTRACT: The electrokinetic properties of carboxymethyldextran, a soft and anionic polysaccharide, were analysed in aqueous NaNO3 solutions through measurements of the electrical conductivity of the suspensions. The results, which furnish new experimental support for the structure of soft polysaccharides in electrolyte solution show that the polyion concentration governs the conductance behavior of the suspension as the ionic strength decreases. This is particularly evident for large polymer concentrations, for which electrical double layer overlap is more likely. In contrast, the electrical conductivity of the suspension at high ionic strength reduces to the contribution of the ions in solution, as screening of the polyion charges is more efficient in such conditions. The applicability of Ohshima's general conductivity expression to these electrical conductivity measurements was examined, and a major discrepancy against the theory was observed. The calculated values of the electrical conductivity deduced on the basis of this theory were found to be lower than the experimental ones. Possible reasons for this discrepancy are discussed and a numerical model, based on the use of a cell approach to account for hydrodynamic and electrical interactions between particles, has shown to be a good description of the experimental electrokinetic data. Copyright © 2015 Elsevier Inc. All rights reserved.
    Journal of Colloid and Interface Science 12/2015; 459:212-7. DOI:10.1016/j.jcis.2015.08.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: The α-Fe2O3/In2O3 composite hollow microspheres were first synthesized through a well-designed two-step hydrothermal approach with an aim to promote the photocatalytic activity of the pure In2O3. The morphologies, phase structures, and optical properties of the resultant samples were systematically characterized by field-emission scanning electron microscopy, transmission electron microscopy, X-ray powder diffraction, X-ray photoelectron spectroscopy, UV-vis diffuse-reflectance, and photoluminescence spectroscopy. The α-Fe2O3 nanoparticles acted as visible-light sensitizer, which were well-decorated on the surface of the In2O3 hollow microspheres. Meanwhile, the investigation of photocatalytic performance confirmed that the visible-light induced photocatalytic degradation rate of gaseous toluene was improved after the introduction of α-Fe2O3 component, which was about 1.6 times higher than that of pure In2O3 sample under identical conditions. Furthermore, some intermediates formed during the photocatalytic oxidation process were also indentified by in␣situ FTIR spectroscopy. The enhanced photocatalytic performance of the α-Fe2O3/In2O3 composites mainly stemmed from the strong visible-light-harvesting ability and the efficient spatial separation of photo-generated electron-hole pairs. Copyright © 2015 Elsevier Inc. All rights reserved.
    Journal of Colloid and Interface Science 11/2015; 457. DOI:10.1016/j.jcis.2015.06.008
  • [Show abstract] [Hide abstract]
    ABSTRACT: Structurally and morphologically different colloidal manganese oxide solids, including manganosite (MnO), bixbyite (Mn2O3) and hausmannite (Mn(2+)[Mn(3+)]2O4), were obtained through the initial biomimetically induced precipitation of a uniform, nanostructured and micron-sized rhodochrosite (MnCO3) precursor phase and their subsequent thermally controlled transformation into oxide structures in air and Ar/H2 atmospheres. The structures and morphology of the obtained precipitates were investigated using X-ray diffraction (XRD) and field-emission scanning electron microscopy (FESEM). Their surface properties were investigated by electrophoretic mobilities (EPM) and specific surface area (SSA) measurements. The results showed that the structurally diverse, micron-sized, spherical manganese oxide particles exhibit unusual and fascinating nanostructured surface morphologies. These were developed through the coalescence of an initially formed, nanosized, crystalline, manganese carbonate precursor phase which, during the heating, transformed into coarser, irregular, elongated, micron-sized, manganese oxide solids. It was also shown that structural transformations and morphological tailoring were followed by significant changes in the physico-chemical properties of the obtained solids. Their SSA values were drastically reduced as a result of the progressive coalescence at the particle surfaces occurring at higher temperatures. The isoelectric points (IEPs) of the obtained manganese oxides were diverse. This is the consequence of their range of crystal-chemical properties that governed the complex physico-chemical processes at the interface of the manganese oxide solid and the aqueous solution. The results of this study may lead to a conceptually new method for the synthesis of high-performance, nanostructured, manganese oxide solids with desirable structural, morphological and surface properties. Copyright © 2015 Elsevier Inc. All rights reserved.
    Journal of Colloid and Interface Science 11/2015; 457. DOI:10.1016/j.jcis.2015.06.041
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hybrid micro and nanoparticles have become a topic of intense research in recent years. This is due to the special properties of these materials that open new avenues in advanced applications. Herein, we report a novel method for the generation of hybrid particles utilising plasma polymerization. Poly (methyl methacrylate) (PMMA) beads were first coated with a thin allylamine based plasma polymer layer. Gold nanoparticles of engineered size and surface structure were then attached in a controlled manner to the plasma polymer coated beads. To generate uniform chemistry on the outermost surface and to preserve the nanotopography, we deposited a 5-10nm thin layer of Acpp. We demonstrated that these particles can be utilized in in vivo models to interrogate important biological phenomena. Specifically, we used them in mice to study the inflammatory and foreign body responses to surface nanotopography. The data strongly indicates that surface nanotopography and chemistry can modulate collagen production and the number of adhering immune cells. The method for generating hybrid particles reported here is solvent free and can open new opportunities in fields such as tissue engineering, drug delivery, biosensors, and regenerative medicine. Copyright © 2015 Elsevier Inc. All rights reserved.
    Journal of Colloid and Interface Science 11/2015; 457. DOI:10.1016/j.jcis.2015.06.040
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bimetallic cerium-copper nanoparticles embedded in ordered mesoporous carbons (OMCs) with various Ce/Cu ratios were synthesized by "one-pot" self-assembly method, and their activities for the selective catalytic reduction (SCR) of NO with ammonia were studied. The structural and textural properties, surface chemistry, acidity, and reducibility were investigated by various techniques. Results showed that NO conversion was greatly influenced by the weight ratio of Ce to Cu. An appropriate Ce/Cu ratio in OMCs could enhance catalytic performance; the optimal catalytic performance was obtained with Ce5Cu5-OMC. Ordered mesoporous structures were formed for all synthesized samples. When Ce or Cu was incorporated into the OMCs, the amount of surface acidic oxygen functional groups increased, thereby promoting the acidic properties of the OMCs, especially those of the Cu-rich OMCs. The surface Cu(2+) species may accelerate ammonia activation and may play an important role in SCR reaction. The temperature-programmed reduction results illustrated that the Cu-rich OMCs had better reducibility, and the appropriate Ce/Cu ratio could further enhance the redox ability of the CexCuy-OMC catalysts. The existing redox cycle (Ce(4+)+Cu(+)↔Cu(2+)+Ce(3+)) promoted the activation of NH3 and consequently improved NH3-SCR activity. Copyright © 2015. Published by Elsevier Inc.
    Journal of Colloid and Interface Science 10/2015; 456. DOI:10.1016/j.jcis.2015.06.001
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gold nanoparticles (NPs) with a mean particle size ranging from 2.1 to 7.4nm were loaded on anatase TiO2 particles (Au/TiO2) by the heating temperature-varied deposition precipitation technique. This study has shown that Au/TiO2 with Au particle size <3nm and TiO2 surface area >50m(2)g(-1) can be a promising environmental catalyst for the rapid removal and decomposition of gaseous acetaldehyde in a closed space. The Au loading on TiO2 causes a drastic enhancement of the acetaldehyde adsorption in the dark, and the adsorption amount increases as the Au particle size decreases. This result originates from the thermocatalytic activity of Au/TiO2 for the oxidation of acetaldehyde to acetic acid under ambient conditions. The resulting acetic acid spontaneously moves to the TiO2 surface due to the great adsorptivity for the carboxyl group. Consequently, the acetaldehyde adsorption amount strongly depends on the TiO2 surface area in addition to the Au particle size. UV-light irradiation of acetaldehyde (or acetate)-adsorbed Au/TiO2 leads to the complete decomposition to carbon dioxide by the high photocatalytic activity of anatase TiO2. Copyright © 2015. Published by Elsevier Inc.
    Journal of Colloid and Interface Science 10/2015; 456. DOI:10.1016/j.jcis.2015.06.016