Optics Express (OPT EXPRESS )

Publisher: Optical Society of America, Optical Society of America

Description

Optics Express is the world's first international all-electronic journal of optics. Published bi-weekly, Optics Express offers OSA quality, rapid publication of original, peer-reviewed articles in all fields of optical science and technology. Color graphics and audio or video features are included at no extra cost to the authors. This journal is freely and widely available to readers via the Internet.

  • Impact factor
    3.55
    Show impact factor history
     
    Impact factor
  • 5-year impact
    3.58
  • Cited half-life
    3.80
  • Immediacy index
    0.80
  • Eigenfactor
    0.25
  • Article influence
    1.13
  • Website
    Optics Express website
  • Other titles
    Optics express
  • ISSN
    1094-4087
  • OCLC
    37160672
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Optical Society of America

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • On a non-profit server
    • Publisher version may be used
    • Publisher copyright and source must be acknowledged with set statement (see policy)
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: As stereoscopic display devices become common, their image quality assessment evaluation becomes increasingly important. Most studies conducted on 3D displays are based on psychophysics experiments with humans rating their experience based on detection tasks. The physical measurements do not map to effects on signal detection performance. Additionally, human observer study results are often subjective and difficult to generalize. We designed a computational stereoscopic observer approach inspired by the mechanisms of stereopsis in human vision for task-based image assessment that makes binary decisions based on a set of image pairs. The stereo-observer is constrained to a left and a right image generated using a visualization operator to render voxel datasets. We analyze white noise and lumpy backgrounds using volume rendering techniques. Our simulation framework generalizes many different types of model observers including existing 2D and 3D observers as well as providing flexibility to formulate a stereo model observer approach following the principles of stereoscopic viewing. This methodology has the potential to replace human observer studies when exploring issues with stereo display devices to be used in medical imaging. We show results quantifying the changes in performance when varying stereo angle as measured by an ideal linear stereoscopic observer. Our findings indicate that there is an increase in performance of about 13–18% for white noise and 20–46% for lumpy backgrounds, where the stereo angle is varied from 0 to 30. The applicability of this observer extends to stereoscopic displays used for in the areas of medical and entertainment imaging applications.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present methodologies for determining the optimum viewing distance (OVD) for a multi-view auto-stereoscopic 3D display system with a parallax barrier. The OVD can be efficiently determined as the viewing distance where statistical deviation of centers of quasi-linear distributions of illuminance at central viewing zones is minimized using local areas of a display panel. This method can offer reduced computation time because it does not use the entire area of the display panel during a simulation, but still secures considerable accuracy. The method is verified in experiments, showing its applicability for efficient optical characterization.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, we optimize the structure of the photonic crystal fibers by using genetic algorithms to provide strong light confinement in fiber and small half diffraction angle of output beam. Furthermore, this article shows the potentials of this study, such as optimizing three purposes at the same time and the arbitrary structure design is achieved. We report two optimized results obtained by different optimization conditions. The results show that the half diffraction angle of the output beam of the photonic crystal fibers can be reduced.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: High-resolution imaging in turbid media has been limited by the intrinsic compromise between the gating efficiency (removal of multiply-scattered light background) and signal strength in the existing optical gating techniques. This leads to shallow depths due to the weak ballistic signal, and/or degraded resolution due to the strong multiply-scattering background – the well-known trade-off between resolution and imaging depth in scattering samples. In this work, we employ a nonlinear optics based optical parametric amplifier (OPA) to address this challenge. We demonstrate that both the imaging depth and the spatial resolution in turbid media can be enhanced simultaneously by the OPA, which provides a high level of signal gain as well as an inherent nonlinear optical gate. This technology shifts the nonlinear interaction to an optical crystal placed in the detection arm (image plane), rather than in the sample, which can be used to exploit the benefits given by the high-order parametric process and the use of an intense laser field. The coherent process makes the OPA potentially useful as a general-purpose optical amplifier applicable to a wide range of optical imaging techniques.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: An ultra-compact integrated coherent receiver with a volume of 1.3 cc using a quad-channel transimpedance amplifier (TIA)-IC chip with a serial peripheral interface (SPI) is demonstrated for the first time. The TIA with the SPI and photodiode (PD) bias circuits, a miniature dual polarization optical hybrid, an octal-PD and small optical coupling system enabled the realization of the compact receiver. Measured transmission performance with 32 Gbaud dual-polarization quadrature phase shift keying signal is equivalent to that of the conventional multi-source agreement-based integrated coherent receiver with dual channel TIA-ICs. By comparing the bit-error rate (BER) performance with that under continuous SPI access, we also confirmed that there is no BER degradation caused by SPI interface access. Such an ultra-compact receiver is promising for realizing a new generation of pluggable transceivers.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: This study presents and validates an optimized method of simultaneous compression and encryption designed to process images with close spectra. This approach is well adapted to the compression and encryption of images of a time-varying scene but also to static polarimetric images. We use the recently developed spectral fusion method [Opt. Lett. 35, 1914–1916 (2010)] to deal with the close resemblance of the images. The spectral plane (containing the information to send and/or to store) is decomposed in several independent areas which are assigned according a specific way. In addition, each spectrum is shifted in order to minimize their overlap. The dual purpose of these operations is to optimize the spectral plane allowing us to keep the low- and high-frequency information (compression) and to introduce an additional noise for reconstructing the images (encryption). Our results show that not only can the control of the spectral plane enhance the number of spectra to be merged, but also that a compromise between the compression rate and the quality of the reconstructed images can be tuned. We use a root-mean-square (RMS) optimization criterion to treat compression. Image encryption is realized at different security levels. Firstly, we add a specific encryption level which is related to the different areas of the spectral plane, and then, we make use of several random phase keys. An in-depth analysis at the spectral fusion methodology is done in order to find a good trade-off between the compression rate and the quality of the reconstructed images. Our new proposal spectral shift allows us to minimize the image overlap. We further analyze the influence of the spectral shift on the reconstructed image quality and compression rate. The performance of the multiple-image optical compression and encryption method is verified by analyzing several video sequences and polarimetric images.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The modulation transfer function (MTF) of radiographic systems is frequently evaluated by the system’s line spread function (LSF) using narrow slits. The conventional slit method requires LSF tail approximation, which is achieved by exponentially extrapolating the LSF tails beyond 1% of peak value. However, the estimated MTF at low frequencies from extrapolation may not reflect the true performance of the system. In this study, a monotone spline regression technique for LSF tail approximation is developed to improve the accuracy of MTF estimation at low frequencies. This technique is based on the underlying physical principles of the system response. The advantages of this technique are demonstrated with simulated examples of which the true MTFs are known. The application of this measurement technique is also demonstrated.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Scattering-type scanning near-field optical microscopy (SNOM) offers the possibility to analyze material properties like strain in crystals at the nanoscale. In this paper we introduce a SNOM setup employing a newly developed tunable broadband laser source with a covered spectral range from 9 µm to 16 µm. This setup allows for the first time optical analyses of the crystal structure of gallium nitride (GaN) at the nanometer scale by excitation of a near-field phonon resonance around 14.5 µm. On the example of an artificially induced stress field within a GaN wafer, we present a method for a 2D visualization of small deviations in the crystal structure, which allows for fast qualitative characterizations. Subsequently, the stress levels at chosen points were quantified by recording complex near-field spectra and correlating them with theoretical model calculations. Applied to the cross-section of a heteroepitaxially grown GaN wafer, we finally demonstrate the capability of our setup to analyze the relaxation of the crystal structure along the growth axis with a nanometer spatial resolution.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate a reverse design method for realizing a broad range of optical filters based on integrated optical waveguides and experimentally verify example designs on a CMOS-compatible silicon-on-insulator (SOI) platform. The reflectance-based filters allow for control of both phase and amplitude of the optical response. Among this device’s many potential applications we highlight and numerically demonstrate its use for ultrafast on-chip pulse shaping.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We propose a nanogap structure composed of semiconductor nanoparticles forming an optical cavity. The resonant excitation of excitons in the nanoparticles can generate a localized strong light field in the gap region, also called “hot spot”. The spectral width of the hot spot is significantly narrow because of the small exciton damping and the dephasing at low temperature, so the semiconductor nanogap structure acts as a high-Q cavity. In addition, the interaction between light and matter at the nanogap is significantly larger than that in a conventional microcavity, because the former has a small cavity-mode volume beyond the diffraction limit. We theoretically demonstrate the large and well-defined vacuum-Rabi splitting of a two-level emitter placed inside the semiconductor nanogap cavity: the Rabi splitting energy of 1.7 meV for the transition dipole moment of the emitter (25 Debye) is about 6.3 times larger than the spectral width. An optical cavity providing such a large and well-defined Rabi splitting is highly suited for studying characteristic features of the cavity quantum electrodynamics and for the development of new applications.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We have observed a remarkable decrease in photoluminescence (PL) from a blue-light emitting InGaN single-quantum-well (SQW) structure under the radiation of a green laser due to the stimulated emission depletion (STED) phenomenon. By extending the observed STED effect, super-resolution imaging of the blue-light emission lateral distribution was demonstrated for the InGaN-SQW structure through co-irradiation using a doughnut-shaped green light beam and a Gaussian-shaped violet excitation light beam. We measured point-spread functions (PSFs) to evaluate the spatial resolution of the system by imaging a small emission area. A lateral PSF size of ~150 nm was confirmed, which was approximately 40% smaller than that without the STED beam. This demonstrates that the STED technique is applicable for PL imaging of semiconductor quantum structures. The present approach may make possible a new strategy for characterizing and investigating the spatial inhomogeneity of emission properties and carrier dynamics in InGaN-based quantum wells, as well as in other semiconductor materials exhibiting quantum confinement effects.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We investigate the evolution of asymmetric self-accelerating finite energy Airy pulses (FEAP) in optical fibers with emphasis on the role of Raman scattering. We show that the Raman-induced frequency shift (RIFS) of soliton initiated by an asymmetric self-accelerating FEAP depends not only on the launched peak power but also on the truncation coefficient imposed on the asymmetric self-accelerating FEAP. We find that the RIFS of asymmetric self-accelerating FEAP increases with a decrease in the truncation coefficient, while the peak power and spectrum width of the outermost red shift of the shedding soliton spectrum are almost unchanged. The time and frequency shifts of the shedding soliton are found to be sensitive to the truncation coefficient when the truncation coefficient is in the range of 0 to 0.1. These excellent features would lead to the realization of a RIFS-based tunable light source by launching self-accelerating FEAP with different truncation coefficient into an optical fiber.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We propose a novel guard-band-shared direct-detection (GBS-DD) scheme to improve the receiver spectrum efficiency (SE). The 100-Gb/s signal is modulated by 2 sub-bands, which are assigned onto two orthogonal polarizations. The central wavelengths of the two sub-bands are set as 10.84-GHz frequency space. The two sub-bands are then received simultaneously using a single conventional photodiode (PD) of 40-GHz bandwidth. Only one optical pilot carrier is inserted to beat with the 2 sub-bands on the two polarizations. When the 2 sub-band signal entering into the receiver, the signal-to-signal beat interference (SSBI) terms fall and overlap in the same guard band. As a consequence, the bandwidth usage of the PD is enhanced from 1/2 to 2/3. The 100-Gb/s signal is modulated using orthogonal frequency-division multiplexing based on offset quadrature-amplitude-modulation of 64-quadrature amplitude modulation (OFDM/OQAM-64QAM), and transmitted over 80-km standard single mode fiber (SSMF) within a 50-GHz optical grid. It is shown that the proposed GBS-DD scheme can be implemented by the current commercial optical/electrical devices.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We report on the first demonstration of a passively (SESAM) mode-locked Yb:CaF2 thin-disk laser operating at a repetition rate of 35 MHz with close to diffraction-limited beam quality (M2 ≈1.1) at an average output power of up to 6.6 W. The optical efficiency was 15.3%. Nearly transform limited pulses with a duration of 445 fs and a spectral width of 2.6 nm at full width half maximum (FWHM) were obtained at the maximum output power. This corresponds to a pulse-energy of approximately 0.19 μJ and a peak-power of 0.4 MW.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this paper, we analyze the relationship between viewer and viewing zones of integral imaging (II) system and present a partially-overlapped viewing zone (POVZ) based integral imaging system with a super wide viewing angle. In the proposed system, the viewing angle can be wider than the viewing angle of the conventional tracking based II system. In addition, the POVZ can eliminate the flipping and time delay of the 3D scene as well. The proposed II system has a super wide viewing angle of 120° without flipping effect about twice as wide as the conventional one.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fluctuations of energy density of short-pulse optical radiation in the turbulent atmosphere have been studied based on numerical solution of the parabolic wave equation for the complex spectral amplitude of the wave field by the split-step method. It has been shown that under conditions of strong optical turbulence, the relative variance of energy density fluctuations of pulsed radiation of femtosecond duration becomes much less than the relative variance of intensity fluctuations of continuous-wave radiation. The spatial structure of fluctuations of the energy density with a decrease of the pulse duration becomes more large-scale and homogeneous. For shorter pulses the maximal value of the probability density distribution of energy density fluctuations tends to the mean value of the energy density.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present time-resolved reflectivity and transmissivity of hot, overdense plasma by employing a multicolor probe beam, consisting of harmonics at wavelengths of 800 nm, 400 nm and 266 nm. The hot-dense plasma, formed by exciting a fused silica target with a 30 fs, 2 × 1017 W cm−2 intensity pulse, shows a sub-picosecond transition in reflectivity (transmissivity), and a wavelength-dependent fall (rise) in the reflected (transmitted) signal. A simple model of probe absorption in the plasma via inverse bremsstrahlung is used to determine electron-ion collision frequency at different plasma densities.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate refractive index sensors based on single mode tapered fiber and its application as a biosensor. We utilize this tapered fiber optic biosensor, operating at 1550 nm, for the detection of protein (gelatin) concentration in water. The sensor is based on the spectroscopy of mode coupling based on core modes-fiber cladding modes excited by the fundamental core mode of an optical fiber when it transitions into tapered regions from untapered regions. The changes are determined from the wavelength shift of the transmission spectrum. The proposed fiber sensor has sensitivity of refractive index around 1500 nm/RIU and for protein concentration detection, its highest sensitivity is 2.42141 nm/%W/V.
    Optics Express 09/2014; 22(19).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Based on the extended Huygens-Fresnel principle and second-order moments of the Wigner distribution function (WDF), we have studied the relative root-mean-square (rms) angular width and the propagation factor of cosine-Gaussian-correlated Schell-model (CGSM) beams propagating in non-Kolmogorov turbulence. It has been found that the CGSM beam has advantage over the Gaussian Schell-model (GSM) beam for reducing the turbulence-induced degradation, and this advantage will be more obvious for the beams with larger parameter n and spatial coherence δ or under the condition of stronger fluctuation of turbulence. The CGSM beam with larger parameter n or smaller spatial coherence δ will be less affected by the turbulence. In addition, the effects of the slope-parameter α , inner and outer scale and the refractive-index structure constant of the non-Kolmogorov’s power spectrum on the propagation factor are also analyzed in detailed.
    Optics Express 09/2014; 22(19).

Related Journals