Experimental Parasitology Journal Impact Factor & Information

Publisher: Elsevier

Journal description

Experimental Parasitology emphasizes modern approaches to parasitology, including molecular biology and immunology. The journal features original research papers on the physiological, metabolic, immunologic, biochemical, nutritional, and chemotherapeutic aspects of parasites and hostñparasite relationships.

Current impact factor: 1.64

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.638
2013 Impact Factor 1.859
2012 Impact Factor 2.154
2011 Impact Factor 2.122
2010 Impact Factor 1.869
2009 Impact Factor 1.773
2008 Impact Factor 1.751
2007 Impact Factor 1.597
2006 Impact Factor 1.108
2005 Impact Factor 1.306
2004 Impact Factor 1.347
2003 Impact Factor 1.119
2002 Impact Factor 1.232
2001 Impact Factor 1.434
2000 Impact Factor 1.657
1999 Impact Factor 1.729
1998 Impact Factor 2.021
1997 Impact Factor 1.512

Impact factor over time

Impact factor

Additional details

5-year impact 1.84
Cited half-life 7.10
Immediacy index 0.28
Eigenfactor 0.01
Article influence 0.47
Website Experimental Parasitology website
Other titles Experimental parasitology (Online), Experimental parasitology, EP
ISSN 1090-2449
OCLC 36967750
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification

Publications in this journal

  • Experimental Parasitology 11/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Profilins are actin-binding proteins that regulate the polymerization of actin filaments. In apicomplexan parasites, they are essential for invasion. Profilins also trigger the immune response of the host by activating TLRs on dendritic cells (DCs), inducing the production of pro-inflammatory cytokines. In this study we characterized for the first time the immune response and protection elicited by a vaccine based on Neospora caninum profilin in mice. Groups of eight BALB/c mice received either two doses of a recombinant N. caninum profilin expressed in E. coli. (rNcPRO) or PBS, both formulated with an aqueous soy-based adjuvant enriched in TLR-agonists. Specific anti-profilin antibodies were detected in rNcPRO-vaccinated animals, mainly IgM and IgG3, which were consumed after infection. Splenocytes from rNcPRO-immunized animals proliferated after an in vitro stimulation with rNcPRO before and after challenge. An impairment of the cellular response was observed in NcPRO vaccinated and infected mice following an in vitro stimulation with native antigens of N. caninum, related to an increase in the percentage of CD4+CD25+FoxP3+. Two out of five rNcPRO-vaccinated challenged mice were protected; they were negative for parasite DNA in the brain and showed no histopathological lesions, which were found in all PBS-vaccinated animals. As a whole, our results provide evidence of a regulatory response elicited by immunization with rNcPRO, and suggest a role of profilin in the modulation and/or evasion of immune responses against N. caninum.
    Experimental Parasitology 11/2015; 160. DOI:10.1016/j.exppara.2015.10.008
  • [Show abstract] [Hide abstract]
    ABSTRACT: Trichinella spiralis Nudix hydrolase (TsNd) was identified by screening a T7 phage display cDNA library from T. spiralis intestinal infective larvae (IIL), and vaccination of mice with recombinant TsNd protein (rTsNd) or TsNd DNA vaccine produced a partial protective immunity. The aim of this study was to identify the characteristics and biological functions of TsNd in the process of invasion and development of T. spiralis larvae. Transcription and expression of TsNd gene at all developmental stages of T. spiralis were observed by qPCR and immunofluorescent test (IFT). The rTsNd had the Nd enzymatic activity to dGTP, NAD, NADP and CoA. Its kinetic properties on the preferred substrate dGTP were calculated, and the Vmax, Km, and kcat/Km values at pH 8.0 were 3.19 μM·min(-1)·μg(-1), 370 μM, and 144 s(-1)·M(-1), respectively, in reaction matrix containing 5 mM Zn(2+) and 2 mM DTT. The rTsNd was active from 25 °C to 50 °C, with optimal activity at 37 °C. rTsNd was able to bind specifically to mouse intestinal epithelial cells (IECs) and promoted the larval invasion of IECs, whereas anti-rTsNd antibodies inhibited the larval invasion of IECs in a dose-dependent manner. Anti-rTsNd antibodies could kill T. spiralis infective larvae by an ADCC-mediated mechanism. Our results showed that the rTsNd protein was able to interact with host IECs, had the Nudix hydrolasing activity and the enzymatic activity appeared to be essential indispensable for the T. spiralis larval invasion, development and survival in host.
    Experimental Parasitology 11/2015; 159. DOI:10.1016/j.exppara.2015.10.009
  • [Show abstract] [Hide abstract]
    ABSTRACT: Trichomonas vaginalis is a human urogenital pathogen that causes trichomoniasis, the most common nonviral, parasitic sexually transmitted infection in the world. At present, little is known regarding the degree of strain variability of T. vaginalis. A classification method for T. vaginalis strains would be a useful tool in the study of the epidemiology, drug resistance, pathogenesis and transmission of T. vaginalis. Eight different types of actin genes have been identified by PCR-RFLP in T. vaginalis; the purpose of this study is to determine the genotypes of this parasite in Karaj city, Iran. Forty-five clinical T. vaginalis isolates from vaginal secretions and urine sediment were collected from Karaj city from 2012 through 2014. DNA was extracted and the actin gene was amplified by nested-PCR; all samples were positive. To determine the genetic differences, sequencing on seven samples was conducted. Then, all PCR products were digested with HindII, MseI, and RsaI restriction enzymes. Of 45 isolates, 23 samples (51.1%) were of actin genotype G, 11 samples (24.4%) of genotype E, six samples (13.3%) of genotype H, three samples (6.6%) of genotype I, and two samples (4.4%) were mixed genotypes of G and E. Genetic diversity of T. vaginalis isolates is notable. The actin genotype G may be the dominant genotype in Karaj city, Iran.
    Experimental Parasitology 11/2015; 159. DOI:10.1016/j.exppara.2015.10.011
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is well known that sex hormones play an important role during Taenia solium infection; however, to our knowledge no studies exist concerning the immune response following complete or lobe-specific removal of the pituitary gland during T. solium infection. Thus, the aim of this work was to analyze in hamsters, the effects of lack of pituitary hormones on the duodenal immune response, and their impact on T. solium establishment and development. Thus, in order to achieve this goal, we perform anterior pituitary lobectomy (AL, n=9), neurointermediate pituitary lobectomy (NIL, n=9) and total hypophysectomy (HYPOX, n=8), and related to the gut establishment and growth of T. solium, hematoxylin-eosin staining of duodenal tissue and immunofluorescence of duodenal cytokine expression and compared these results to the control intact (n=8) and control infected group (n=8). Our results indicate that 15 days post-infection, HYPOX reduces the number and size of intestinally recovered T. solium adults. Using semiquantitative immunofluorescent laser confocal microscopy, we observed that the mean intensity of duodenal IFN-γ and IL-12 Th1 cytokines was mildly expressed in the infected controls, in contrast with the high level of expression of these cytokines in the NIL infected hamsters. Likewise, the duodenum of HYPOX animals showed an increase in the expression of Th2 cytokines IL-5 and IL-6, when compared to control hamsters. Histological analysis of duodenal mucosa from HYPOX hamsters revealed an exacerbated inflammatory infiltrate located along the lamina propria and related to the presence of the parasite. We conclude that lobe-specific pituitary hormones affect differentially the T. solium development and the gut immune response.
    Experimental Parasitology 10/2015; 159. DOI:10.1016/j.exppara.2015.10.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: The chronobiology of cercarial emergence appeared to be a genetically controlled behavior, adapted to definitive host species, for schistosome. However, a few physiological and ecological factors, for example the change of photoperiod, were reported to affect the rhythmic emergence of cercariae. Therefore, the effect of photoperiod change on cercarial emergence of two S. japonicum isolates, the hilly and the marshland, was investigated. Four shedding experiments each under a different photoperiod were conducted. Under a natural photoperiod, two distinct shedding modes, one from the hilly region and one from the marshland, were observed. Under a reversed photoperiod, the regular pattern (i.e. under a natural photoperiod) of S. japonicum cercarial emergence was reversed for the marshland isolate and disappeared for the hilly isolate. With an input of a 2h darkness from 7am to 9am, the cercarial emergence peak were delayed for the two isolates; whereas with an input of a 2h darkness from 5pm to 7pm, neither effect on the cercarial emergence rhythm was observed. The total cercariae emerged for both parasite isolates varied with a different photoperiod. The results indicate that the change of photoperiod could affect the chronobiology of Schistosoma japonicum cercarial emergence.
    Experimental Parasitology 10/2015; 159. DOI:10.1016/j.exppara.2015.10.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: The equine pinworm Oxyuris equi (Nematoda: Oxyuridomorpha) is the most common horse nematode, has a worldwide distribution, and causes major economic losses. In the present study, the complete O. equi mitochondrial (mt) genome was sequenced, and the mt genome structure and organization were compared with those of other closely related pinworm species, Enterobius vermicularis and Wellcomia siamensis. The O. equi mt genome is a 13,641-bp circular DNA molecule that encodes 36 genes (12 protein-coding genes, 22 tRNAs, and two rRNAs) and one non-coding region, which is slightly shorter than that of E. vermicularis and W. siamensis. The O. equi mt gene arrangement was consistent with that of GA13-type E. vermicularis but it differs from GA12-type W. siamensis. Phylogenetic analyses using concatenated amino acid sequences of the 12 protein-coding genes with three different computational algorithms (maximum parsimony, maximum likelihood, and Bayesian inference) revealed that there were two distinct clades in Chromadorea nematodes that reflected infraorder. Spiruromorpha formed one clade, whereas Rhabditomorpha, Ascaridomorpha, and Oxyuridomorpha formed another clade. Oxyuris equi, E. vermicularis, and W. siamensis represent distinct but closely related species, which indicated that Oxyuridomorpha is paraphyletic. Sequencing the O. equi mt genome provides novel genetic markers for studying the molecular epidemiology and population genetics of pinworms.
    Experimental Parasitology 10/2015; 159. DOI:10.1016/j.exppara.2015.09.013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Schistosomiasis is one of the world's major public health problems, and its treatment is widely dependent on praziquantel (PZQ), the only available drug. Schistosoma mansoni ATP diphosphohydrolases are ecto-enzymes localized on the external tegumental surface of S. mansoni and considered an important target for action of new drugs. In this work, the in vitro schistosomicidal activity of the crude extract of Glycyrrhiza inflata roots (GI) and its isolated compounds echinatin, licoflavone A and licoflavone B were evaluated against S. mansoni adult worms. Results showed that GI (200 μg/mL) was active against adult schistosomes, causing 100% mortality after 24 h of incubation. Chromatographic fractionation of GI led to isolation of echinatin, licoflavone A and licoflavone B. Licoflavone B (25 to 100 μM) caused 100% mortality, tegumental alterations, and reduction of oviposition and motor activity of all adult worms, without affecting mammalian Vero cells. Confocal laser scanning microscopy showed tegumental morphological alterations and changes on the numbers of tubercles of S. mansoni worms in a dose-dependent manner after incubation with licoflavone B. Licoflavone B also showed high S. mansoni ATPase (IC50 of 23.78 μM) and ADPase (IC50 of 31.50 μM) inhibitory activities. Docking studies predicted different interactions between licoflavone B and S. mansoni ATPDase 1, corroborating with the in vitro inhibitory activity. This report demonstrated the first evidence for the schistosomicidal activity of licoflavone B and suggests that its mechanism of action involve the inhibition of S. mansoni ATP diphosphohydrolases.
    Experimental Parasitology 10/2015; 159. DOI:10.1016/j.exppara.2015.09.015
  • [Show abstract] [Hide abstract]
    ABSTRACT: Protein tyrosine phosphatase of regenerating liver (PRL) is a group of phosphatases that has not been broadly studied in protozoan parasites. In humans, PRLs are involved in metastatic cancer, the promotion of cell migration and invasion. PTPs have been increasingly recognized as important effectors of host-pathogen interactions. We characterized the only putative protein tyrosine phosphatase PRL (PTP EhPRL) in the eukaryotic human intestinal parasite E. histolytica. Here, we reported that the EhPRL protein possessed the classical HCX5R catalytic motif of PTPs and the CAAX box characteristic of the PRL family and exhibited 31-32% homology with the three human PRL isoforms. In amebae, the protein was expressed at low but detectable levels. The recombinant protein (rEhPRL) had enzymatic activity with the 3-o-methyl fluorescein phosphate (OMFP) substrate; this enzymatic activity was inhibited by the PTP inhibitor o-vanadate. Using immunofluorescence we showed that native EhPRL was localized to the cytoplasm and plasma membrane. When the trophozoites interacted with collagen, EhPRL relocalized over time to vesicle-like structures. Interaction with fibronectin increased the presence of the enzyme in the cytoplasm. Using RT-PCR, we demonstrated that EhPRL mRNA expression was upregulated when the trophozoites interacted with collagen but not with fibronectin. Trophozoites recovered from amoebic liver abscesses showed higher EhPRL mRNA expression levels than normal trophozoites. These results strongly suggest that EhPRL may play an important role in the biology and adaptive response of the parasite to the host environment during amoebic liver abscess development, thereby participating in the pathogenic mechanism.
    Experimental Parasitology 10/2015; 159. DOI:10.1016/j.exppara.2015.09.014
  • [Show abstract] [Hide abstract]
    ABSTRACT: Leishmaniasis is a complex disease caused by protozoan parasite Leishmania and the treatment remains a serious problem since the available drugs exhibited high toxicity and side effects. Plant-derived natural products are promising leads for the development of novel chemotherapeutics. In this work the phytol-rich hexane fraction (PRF) from the leaves of Lacistema pubescens was obtained and identified by GC-MS analysis. When assayed for antileishmanial effects, PRF was active against promastigote and amastigote forms of Leishmania amazonensis (IC50 values of 44.0 and 25.8 μg/mL respectively). Furthermore, PRF did not show significant cytotoxicity on peritoneal macrophages being more destructive to the intracellular parasite than to mammalian cells. In addition, possible targets of PRF were investigated against L. amazonensis promastigotes. The results showed that PRF exerted its antipromastigote activity by marked depolarization of the mitochondrial membrane potential followed by the increase of ROS levels in L. amazonensis promastigotes. During these events, no rupture of the cell membrane integrity was observed. Our results indicated that PRF was effective and selective against L. amazonensis, and that this effect was mainly mediated by mitochondrial dysfunction associated to ROS production.
    Experimental Parasitology 10/2015; 159. DOI:10.1016/j.exppara.2015.09.009
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dendritic cells (DCs) play critical roles in innate and adaptive immunity and in pathogenesis during the blood stage of malaria infection. The mechanisms underlying DC homeostasis during malaria infection are not well understood. In this study, the numbers of conventional DCs (cDCs) and plasmacytoid DCs (pDCs) in the spleens after lethal rodent malaria infection were examined, and were found to be significantly reduced. Concomitant with up-regulation of maturation-associated molecules, activation of caspase-3 was significantly increased, suggesting induction of cell death. Studies using neutralizing antibody and gene-deficient mice showed that type I and II interferons were critically involved in activation induced cell death of cDCs during malaria infection. These results demonstrate that DCs rapidly disappeared following IFN-mediated DC activation, and that homeostasis of DCs was significantly impaired during malaria infection.
    Experimental Parasitology 09/2015; 159. DOI:10.1016/j.exppara.2015.09.010
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recently, a family of innate cells has been identified that respond to IL-25 and IL-33 in murine intestinal helminths. Termed Type 2 innate lymphoid cells (ILC2s) they facilitate the development of Th2 responses responsible for helminth clearance. We evaluated these cells in a tissue-invasive helminth model. Using Litomosides sigmodontis (a strong Th2 polarizing filarial infection) we observed a robust Th2 response in the pleural cavity, where adult worms reside, marked by increased levels of IL-5 and IL-13 in infected mice. In parallel, ILC2s were expanded in the pleural cavity early in the infection, peaking during the pre-patent period. L. sigmodontis also elicits a strong systemic Th2 response, which includes significantly increased levels of IgG1, IgE and IL-5 in the plasma of infected mice. Although ILC2s were expanded locally, they were not expanded in the spleen, blood, or mediastinal lymph nodes in response to L. sigmodontis infection, suggesting that ILC2s function primarily at the site of infection. The increase in ILC2s in the pleural cavity and the expansion in Th2 responses indicates a probable role for these cells in initiating and maintaining the Th2 response and highlights the importance of these cells in helminth infections and their role in Th2 immunity.
    Experimental Parasitology 09/2015; 159. DOI:10.1016/j.exppara.2015.09.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: The roundworms of genus Strongylus are the common parasitic nematodes in the large intestine of equine, causing significant economic losses to the livestock industries. In spite of its importance, the genetic data and epidemiology of this parasite are not entirely understood. In the present study, the complete S. equinus mitochondrial (mt) genome was determined. The length of S. equinus mt genome DNA sequence is 14,545 bp, containing 36 genes, of which 12 code for protein, 22 for transfer RNA, and two for ribosomal RNA, but lacks atp8 gene. All 36 genes are encoded in the same direction which is consistent with all other Chromadorea nematode mtDNAs published to date. Phylogenetic analysis based on concatenated amino acid sequence data of all 12 protein-coding genes showed that there were two large branches in the Strongyloidea nematodes, and S. equinus is genetically closer to S. vulgaris than to Cylicocyclus insignis in Strongylidae. This new mt genome provides a source of genetic markers for the molecular phylogeny and population genetics of equine strongyles.
    Experimental Parasitology 09/2015; 159. DOI:10.1016/j.exppara.2015.08.012
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rabbit coccidiosis caused by members of the genus Eimeria can cause enormous economic impact worldwide, but the genetics, epidemiology and biology of these parasites remain poorly understood. In the present study, we sequenced and annotated the complete mitochondrial (mt) genomes of five Eimeria species that commonly infect the domestic rabbits. The complete mt genomes of E. intestinalis, E. flavescens, E. media, E. vejdovskyi and E. irresidua were 6261 bp, 6258 bp, 6168 bp, 6254 bp, 6259 bp in length, respectively. All of the mt genomes consist of 3 genes for proteins (cytb, cox1, and cox3), 14 gene fragments for the large subunit (LSU) rRNA and 11 gene fragments for the small subunit (SSU) rRNA, but no transfer RNA (tRNA) genes. The gene order of the mt genomes is similar to that of Plasmodium, but distinct from Haemosporida and Theileria. Phylogenetic analyses based on full nucleotide sequences using Bayesian analysis revealed that the monophyly of the Eimeria of rabbits was strongly statistically supported with a Bayesian posterior probabilities. These data provide novel mtDNA markers for studying the population genetics and molecular epidemiology of the Eimeria species, and should have implications for the molecular diagnosis, prevention and control of coccidiosis in rabbits.
    Experimental Parasitology 09/2015; 159. DOI:10.1016/j.exppara.2015.09.003