Ecotoxicology and Environmental Safety Journal Impact Factor & Information

Publisher: International Society of Ecotoxicology and Environmental Safety; International Academy of Environmental Safety, Elsevier

Journal description

Current impact factor: 2.48

Impact Factor Rankings

2015 Impact Factor Available summer 2015
2013 / 2014 Impact Factor 2.482
2012 Impact Factor 2.203
2011 Impact Factor 2.294
2010 Impact Factor 2.34
2009 Impact Factor 2.133
2008 Impact Factor 2.59
2007 Impact Factor 2.014
2006 Impact Factor 2
2005 Impact Factor 2.022
2004 Impact Factor 1.282
2003 Impact Factor 0.983
2002 Impact Factor 1.189
2001 Impact Factor 1.252
2000 Impact Factor 1.06
1999 Impact Factor 1.276
1998 Impact Factor 0.731
1997 Impact Factor 0.959
1996 Impact Factor 0.914
1995 Impact Factor 0.939
1994 Impact Factor 1.29
1993 Impact Factor 0.87
1992 Impact Factor 0.684

Impact factor over time

Impact factor

Additional details

5-year impact 2.57
Cited half-life 6.40
Immediacy index 0.40
Eigenfactor 0.01
Article influence 0.61
Other titles Ecotoxicology and environmental safety (Online), Ecotoxicology and environmental safety, Environmental research., EES
ISSN 1090-2414
OCLC 36967219
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Authors pre-print on any website, including arXiv and RePEC
    • Author's post-print on author's personal website immediately
    • Author's post-print on open access repository after an embargo period of between 12 months and 48 months
    • Permitted deposit due to Funding Body, Institutional and Governmental policy or mandate, may be required to comply with embargo periods of 12 months to 48 months
    • Author's post-print may be used to update arXiv and RepEC
    • Publisher's version/PDF cannot be used
    • Must link to publisher version with DOI
    • Author's post-print must be released with a Creative Commons Attribution Non-Commercial No Derivatives License
    • Publisher last reviewed on 03/06/2015
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Flavonoid is a key factor for the tolerance to cadmium in plants. Concentration-dependent kinetics experiment was conducted to investigate the influence of flavonoid amendment on the Cd(2+) uptake in Avicennia marina (Forsk) Vierh. roots. We found that compared with the control, saturation concentration and maximal absorption rate of Cd was higher under flavonoid amendment (p<0.05). When roots were exposed to ion transport inhibitor (LaCl3), flavonoid amendment also facilitated Cd transport in roots. Flavonoids had no influence on Cd(2+) uptake in root cell walls. In conclusion, flavonoids enhance the tolerance to Cd and have a significant stimulative effect on symplasm transport of Cd in A. marina roots. Ca(2+)-channel was not the unique means of symplasm transport for Cd(2+) absorption. Copyright © 2015 Elsevier Inc. All rights reserved.
    Ecotoxicology and Environmental Safety 10/2015; 120. DOI:10.1016/j.ecoenv.2015.05.004
  • [Show abstract] [Hide abstract]
    ABSTRACT: A weight of evidence (WoE) framework has been applied to assess sediment quality of a typical freshwater lake, Tai Lake in China, where the sediments were contaminated by various chemicals but showed no acute lethality to the benthic invertebrate, Chironomus dilutus. A quantitative scoring method was employed to integrate three lines of evidence (LoE), including adverse effects in life cycle bioassays, biomarker responses, and bioavailability-based chemical analysis. Six biomarkers were determined in C. dilutus after the exposure to the sediments from Tai Lake and provided sensitive indication of sublethal effects at the molecular level. The biomarkers included cytochrome P450, glutathione S-transferase, carboxylesterase, acetylcholinesterase, catalase, and lipid peroxidation. The changes of the biomarkers were summarized for individual sampling sites by computing the integrated biomarker response (IBR) indices. Complementary information was also confirmed by the interrelationship of the LoEs. The IBR indices gained before pupation correlated well with the impairments of emergence of the midges, and altered acetylcholinesterase was corroborated by the detection of chlorpyrifos, an organophosphate pesticide. The relationship between bioavailable toxic units estimated by Tenax extractable concentrations of chemicals in sediment and the observed toxicity in the midges helped to identify the putative toxicity contributors to C. dilutus. Overall, the WoE method clearly distinguished the contaminated sites and ranked them by the level of contamination. Sediment-associated pesticides, particularly γ-hexachlorocyclohexane and chlorpyrifos, were the possible contributors to chronic toxicity to the midges. Copyright © 2015 Elsevier Inc. All rights reserved.
    Ecotoxicology and Environmental Safety 09/2015; 119. DOI:10.1016/j.ecoenv.2015.05.007
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recycling water treatment plant (WTP) waste residuals is considered to be a feasible method to enhance the efficiency of pollutant removal. This study also evaluated the safety and water quality of a pilot-DWTP waste residuals recycling technology by combining physical-chemistry analysis with a Daphnia magna assay. The water samples taken from each treatment step were extracted and concentrated by XAD-2 resin and were then analyzed for immobilization and enzyme activity with D. magna. The measured parameters, such as the dissolve organic carbon (DOC), UV254 and THM formation potential (THMFPs) of the recycling process, did not obviously increase over 15 days of continuous operation and were even lower than typical values from a conventional process. The extract concentration ranged from 0 to 2Leq/ml as measured on the 7th and 15th days and the immobilization of D. magna exposed to water treated by the recycling process was nearly equivalent to that of the conventional process. Both the superoxide dismutase (SOD) and the catalase (CAT) activity assay indicated that a lower dose of water extract (0.5, 1, 1.5Leq/ml) could stimulate the enzyme activity of D. magna, whereas a higher dose (2Leq/ml at the sampling point C3, R3, R4 ) inhibits the activity. Moreover, the SOD and CAT activity of D. magna with DOC and UV254 showed a strong concentration-effect relationship, where the concentration range of DOC and UV254 were 4.1-16.2mg/L and 0.071-4.382cm(-1), respectively. The results showed that there was no statistically significant difference (p>0.05) between the conventional and recycling treatment processes and the toxicity of water samples in the recycling process did not increase during the 15-day continuous recycling trial. Copyright © 2015 Elsevier Inc. All rights reserved.
    Ecotoxicology and Environmental Safety 08/2015; 122:368-376. DOI:10.1016/j.ecoenv.2015.08.023
  • [Show abstract] [Hide abstract]
    ABSTRACT: Core-shell structured TiO2/Li2CO3 electrode was successfully synthesized by eco-friendly solution growth technique. TiO2/Li2CO3 electrodes were characterized using X-ray Diffractometer (XRD), Scanning electron microscopy (SEM) and photocurrent-voltage measurements. The synthesized core-shell electrode material was sensitized with tetrabutylammonium cis-di(thiocyanato)-N,N'-bis(4-carboxylato-4'-carboxylic acid-2,2'-bipyridine)ruthenate(II) (N-719). The performance of dye-sensitized solar cells (DSCs) based on N719 dye modified TiO2/Li2CO3 electrodes was investigated. The effect of various shell thickness on the photovoltaic performance of the core-shell structured electrode is also investigated. We found that Li2CO3 shells of all thicknesses perform as inert barriers which improve open-circuit voltage (Voc) of the DSCs. The energy conversion efficiency was greatly dependent on the thickness of Li2CO3 on TiO2 film, and the highest efficiency of 3.7% was achieved at the optimum Li2CO3 shell layer. Copyright © 2015 Elsevier Inc. All rights reserved.
    Ecotoxicology and Environmental Safety 08/2015; DOI:10.1016/j.ecoenv.2015.08.016
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plastic wastes are increasingly being recycled in many countries. However, available information on the metals released into the environment during recycling processes is rare. In this study, the contamination features and risks of eight heavy metals in soils and sediments were investigated in Wen'an, a typical plastic recycling area in North China. The surface soils and sediments have suffered from moderate to high metal pollution and in particular, high Cd and Hg pollution. The mean concentrations of Cd and Hg were 0.355 and 0.408mgkg(-1), respectively, in the soils and 1.53 and 2.10mgkg(-1), respectively, in the sediments. The findings suggested that there is considerable to high potential ecological risks in more than half of the soils and high potential ecological risk in almost all sediments. Although the health risk levels from exposure to soil metals were acceptable for adults, the non-carcinogenic risks to local children exceeded the acceptable level. Source assessment indicated that heavy metals in soils and sediments were mainly derived from inputs from poorly controlled plastic waste recycling operations in this area. The results suggested that the risks associated with heavy metal pollution from plastic waste recycling should be of great concern. Copyright © 2015 Elsevier Inc. All rights reserved.
    Ecotoxicology and Environmental Safety 08/2015; 122:343-351. DOI:10.1016/j.ecoenv.2015.08.006
  • [Show abstract] [Hide abstract]
    ABSTRACT: The main byproduct of the sugarcane industry, Saccharum officinarum L. bagasse (sugarcane bagasse, SCB), is widely used as lignocellulose biomass for bio-ethanol (EtOH) production. In this research study, SCB was pretreated by steam explosion (SE) method using two different impregnating agents: sulfur dioxide (SD) and hydrogen peroxide (HP). As matter of fact, the use of impregnating agents improves the performance of SE method, increasing the concentrations of fermentable sugars after enzymatic saccharification, and decreasing the inhibitor compounds produced during the steam pretreatment step. The aim of this study was to investigate and compare the use of the two impregnating agents in various SE-conditions in order to optimize pretreatment parameters. For every pretreatment condition, it has been evaluated: concentration of fermentable sugars, glucose and xylose yields, and the effects of the inhibitor compounds on enzymatic hydrolysis step. The obtained results allow to improve the efficiency of the whole process of bio-EtOH synthesis enhancing the amount of fermentable sugars produced and the eco-sustainability of the whole process. Indeed, the optimization of steam pretreatment leads to a reduction of energy requirements and to a lower environmental impact. Copyright © 2015 Elsevier Inc. All rights reserved.
    Ecotoxicology and Environmental Safety 08/2015; DOI:10.1016/j.ecoenv.2015.07.034
  • [Show abstract] [Hide abstract]
    ABSTRACT: Washing soda is chemically known as sodium carbonate and is a component of laundry detergent. Domestic effluent, drain water and various anthropogenic activities have been identified as major routes of sodium carbonate contamination of the freshwater ecosystem. The freshwater sponge, Eunapius carteri, bears ecological and evolutionary significance and is considered as a bioresource in aquatic ecosystems. The present study involves estimation of morphological damage, lysosomal membrane integrity, activity of phosphatases and apoptosis in the cells of E. carteri under the environmentally realistic concentrations of washing soda. Exposure to washing soda resulted in severe morphological alterations and damages in cells of E. carteri. Fragility and destabilization of lysosomal membranes of E. carteri under the sublethal exposure was indicative to toxin induced physiological stress in sponge. Prolonged exposure to sodium carbonate resulted a reduction in the activity of acid and alkaline phosphatases in the cells of E. carteri. Experimental concentration of 8mg/l of washing soda for 192h yielded an increase in the physiological level of cellular apoptosis among the semigranulocytes and granulocytes of E. carteri, which was suggestive to possible shift in apoptosis mediated immunoprotection. The results were indicative of an undesirable shift in the immune status of sponge. Contamination of the freshwater aquifers by washing soda thus poses an alarming ecotoxicological threat to sponges. Copyright © 2015 Elsevier Inc. All rights reserved.
    Ecotoxicology and Environmental Safety 08/2015; 122:331-342. DOI:10.1016/j.ecoenv.2015.08.011
  • [Show abstract] [Hide abstract]
    ABSTRACT: Soil enzyme activities are attracting widespread interest due to its potential use in contaminant breakdown, and as indicators of soil deterioration. However, given the multiple environmental and methodological factors affecting their activity levels, assessment of soil pollution using these biochemical endpoints is still complex. Taking advantage of the well-known stimulatory effect of earthworms on soil microbes, and their associated enzyme activities, we explored some toxicological features of carboxylesterases (CbEs) in soils inoculated with Lumbricus terrestris. A microplate-scale spectrophotometric assay using soil-water suspensions was first optimized, in which kinetic assay parameters (Km, Vmax, dilution of soil homogenate, and duration of soil homogenization) were established for further CbE determinations. Optimal conditions included a soil-to-water ratio of 1:50 (w/v), 30-min of shaking, and 2.5mM of substrate concentration. As expected, CbE activity increased significantly in soils treated with L. terrestris. This bioturbed soil was used for exploring the role of CbE activity as a bioscavenger for organophosphorus (OP) pesticides. Soil treated with two formulations of chlorpyrifos revealed that CbE activity was a significant molecular sink for this pesticide, reducing its impact on soil microbial activity as shown by the unchanged dehydrogenase activity. Dose-dependent curves were adjusted to an exponential kinetic model, and the median ecological dose (ED50) for both pesticide formulations was calculated. ED50 values decreased as the time of pesticide exposure increased (14d-ED50s=20.4-26.7mgkg(-1), and 28d-ED50s=1.8-2.3mgkg(-1)), which suggested that chlorpyrifos was progressively transformed into its highly toxic metabolite chlorpyrifos-oxon, but simultaneously was inactivated by CbEs. These results were confirmed by in vitro assays that showed chlorpyrifos-oxon was a more potent CbE inhibitor (IC50=35.5-4.67nM) than chlorpyrifos (0.41-0.84μM). The results showed that earthworm-induced CbE activity is an efficient bioscavengers for OP pesticides, acting as a soil safeguarding system. Moreover, the simple dose-response curves against OP exposure suggest that this enzyme - combined with other enzyme activities (e.g., dehydrogenase) - may be a suitable biomarker of pesticide exposure. Copyright © 2015 Elsevier Inc. All rights reserved.
    Ecotoxicology and Environmental Safety 08/2015; 122:EES15582. DOI:10.1016/j.ecoenv.2015.08.012
  • [Show abstract] [Hide abstract]
    ABSTRACT: The three bacteria, Tsukamurella paurometabola A155, Pseudomonas aeruginosa B237, and Cupriavidus taiwanensis E324, were isolated from soils collected from a zinc mine in Tak Province, Thailand. Among these bacteria, P. aeruginosa B237 and C. taiwanensis E324 were tolerant of both cadmium and zinc, while T. paurometabola A155 was highly tolerant of zinc only. Bioaccumulation experiment revealed that Cd(2+) and Zn(2+) were mainly adsorbed on the cell walls of these bacteria rather than accumulated inside the cells. During Cd(2+) and Zn(2+) biosorption, P. aeruginosa B237 and T. paurometabola A155 showed the highest removal efficiencies for Cd(2+) and Zn(2+), respectively. The maximum biosorption capacities of P. aeruginosa B237 and T. paurometabola A155 biomasses for Cd(2+) and Zn(2+) biosorptions were 16.89 and 16.75mgg(-1), respectively, under optimal conditions. The experimental data of Cd(2+) and Zn(2+) biosorptions fitted well with Langmuir isotherm model, suggesting that Cd(2+) and Zn(2+) adsorptions occurred in a monolayer pattern on a homogeneous surface. Furthermore, the pseudo-second order and pseudo-first order kinetic models best described the biosorption kinetics of Cd(2+) and Zn(2+) adsorptions, respectively, suggesting that the Cd(2+) and Zn(2+) adsorptions took place mainly by chemisorption (Cd(2+)) and physisorption (Zn(2+)). Copyright © 2015 Elsevier Inc. All rights reserved.
    Ecotoxicology and Environmental Safety 08/2015; 122:322-330. DOI:10.1016/j.ecoenv.2015.08.013
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rice is the staple diet of over half of the world's population and Bacillus thuringiensis (Bt) rice expressing insecticidal Cry proteins is ready for deployment. An assessment of the potential impact of Bt rice on the soil ecosystem under varied field management practices is urgently required. We used litter bags to assess the residue (leaves, stems and roots) decomposition dynamics of two transgenic rice lines (Kefeng6 and Kefeng8) containing stacked genes from Bt and sck (a modified CpTI gene encoding a cowpea trypsin inhibitor) (Bt/CpTI), a non-transgenic rice near-isoline (Minghui86), wild rice (Oryza rufipogon) and crop-wild Bt rice hybrid under contrasting conditions (drainage or continuous flooding) in the field. No significant difference was detected in the remaining mass, total C and total N among cultivars under aerobic conditions, whereas significant differences in the remaining mass and total C were detected between Kefeng6 and Kefeng8 and Minghui86 under the flooded condition. A higher decomposition rate constant (km) was measured under the flooded condition compared with the aerobic condition for leaf residues, whereas the reverse was observed for root residues. The enzyme-linked immunosorbent assay (ELISA), which was used to monitor the changes in the Cry1Ac protein in Bt rice residues, indicated that (1) the degradation of the Cry1Ac protein under both conditions best fit first-order kinetics, and the predicted DT50 (50% degradation time) of the Cry1Ac protein ranged from 3.6 to 32.5 days; (2) the Cry1Ac protein in the residue degraded relatively faster under aerobic conditions; and (3) by the end of the study (~154 days), the protein was present at a low concentration in the remaining residues under both conditions. The degradation rate constant was negatively correlated with the initial carbon content and positively correlated with the initial Cry1Ac protein concentration, but it was only correlated with the mass decomposition rate constants under the flooded condition. No Cry1Ac protein was detected in the soils surrounding the buried residue. Our results did not reveal any evidence that the stacked genes (Bt/CpTI) or the presence of the Cry1Ac protein influenced the decomposition dynamics of the rice residues. Furthermore, our results suggested that field drainage after residue incorporation would promote Cry1Ac protein degradation. Copyright © 2015. Published by Elsevier Inc.
    Ecotoxicology and Environmental Safety 08/2015; 122:275-289. DOI:10.1016/j.ecoenv.2015.08.008
  • [Show abstract] [Hide abstract]
    ABSTRACT: The wide use of plant-based oils and their derivatives, in particular biodiesel, have increased extensively over the past decade to help alleviate demand for petroleum products and improve the greenhouse gas emissions profile of the transportation sector. Biodiesel is regarded as a clean burning alternative fuel produced from livestock feeds and various vegetable oils. Although in theory these animal and/or plant derived fuels should have less environmental impact in soil based on their simplified composition relative to Diesel, they pose an environmental risk like Diesel at high concentrations when disposed. The aim of the present study was to ascertain the phytotoxicity of three different plant-derived biodiesels relative to conventional Diesel. For phytotoxicological analysis, we used seeds of four crop plants, Medicago sativa, Lactuca sativa, Raphanus sativus, and Triticum aestivum to analyze the germination of seeds in contaminated soil samples. The toxicological experiment was conducted with two different soil textures: sandy loam soil and silt loam soil. The studied plant-based biodiesels were safflower methyl-ester, castor methyl ester, and castor ethyl-ester. Biodiesel toxicity was more evident at high concentrations, affecting the germination and survival of small-seeded plants to a greater extent. Tolerance of plants to the biodiesels varied between plant species and soil textures. With the exception of R. sativus, all plant species were affected and exhibited some sensitivity to the fuels, such as delayed seedling emergence and slow germination (average=10 days) at high soil concentrations (0.85% for Diesel and 1.76% for the biodiesels). Tolerance of plants to soil contamination had a species-specific nature, and on average, decreased in the following order: Raphanus sativus (0-20%)>Triticum aestivum (10-40%)≥Medicago sativa> Lactuca sativa (80-100%). Thus, we conclude that there is some phytotoxicity associated with plant-based biodiesels. Further, the findings of this study can be useful for selecting the least fuel-tolerant species as a soil contamination bio-indicator and for determining the risks of biodiesel contamination. Copyright © 2015 Elsevier Inc. All rights reserved.
    Ecotoxicology and Environmental Safety 08/2015; 122:EES15503. DOI:10.1016/j.ecoenv.2015.08.003
  • [Show abstract] [Hide abstract]
    ABSTRACT: Magnesium oxide nanoparticles (MgONPs) are used in medicine, manufacturing and food industries. Because of their extensive application in our daily lives, environmental exposure to these nanoparticles is inevitable. The present study examined the effects of MgONPs on zebrafish (Danio rerio) early developmental stages. The results showed that, at different concentrations, MgONPs induced cellular apoptosis and intracellular reactive oxygen species. The hatching rate and survival of embryos decreased in a dose dependent manner. The 96-h LC50 value of MgONPs on zebrafish survival was 428mg/l and the 48-h EC50 value of MgONPs on zebrafish embryo hatching rate was 175mg/l. Moreover different types of malformation were observed in exposed embryos. The results demonstrate the toxic effects of MgONPs on zebrafish embryos and emphasize the need for further studies. Copyright © 2015 Elsevier Inc. All rights reserved.
    Ecotoxicology and Environmental Safety 08/2015; 122:EES15454. DOI:10.1016/j.ecoenv.2015.08.009
  • [Show abstract] [Hide abstract]
    ABSTRACT: This work reports the details of the design components and materials used in a linear compound parabolic trough reactor constructed with an aim to use the photocatalyst for solar photocatalytic applications. A compound parabolic trough reactor has been designed and engineered to exploit both UV and visible part of the solar irradiation. The developed compound parabolic trough reactor could receive almost 88% of UV radiation along with a major part of visible radiation. The performance of the reactor has been evaluated in terms of degradation of a probe pollutant using the parameters such as rate constant, residence time and photonic efficiency. An attempt has been made to assess the performance in different ranges of solar spectrum. Finally the developed reactor has been employed for the photocatalytic treatment of a paper mill effluent using Degussa P25 as the photocatalyst. The paper mill effluent collected from Nagaon paper mill, Assam, India has been treated under both batch mode and continuous mode using Degussa P25 photocatalyst under artificial and natural solar radiation, respectively. The photocatalytic degradation kinetics of the paper mill effluent has been determined using the reduction in total organic carbon (TOC) values of the effluent. Copyright © 2015 Elsevier Inc. All rights reserved.
    Ecotoxicology and Environmental Safety 08/2015; DOI:10.1016/j.ecoenv.2015.07.036