Journal of Science Education and Technology (J Sci Educ Tech )

Publisher: Springer Verlag

Description

Journal of Science Education and Technology provides a wide variety of papers aimed at improving and enhancing science education at all levels in the United States. The journal's original peer-reviewed articles foster the communication of new ideas and research to correct the problems that hinder scientific instruction. The broad scope of this ambitious quarterly encompasses science education from kindergarten to the college level across a wide range of disciplines. Areas of coverage include: disciplinary (learning processes related to the acquisition and assessment of biology chemistry physics computer science and engineering); technological (the latest computer video audio and print technology that plays a role in scientific advancement understanding and information delivery); organizational (legislation implementation administration and teacher enhancement issues); and practical (development demonstration and evaluation of effective educational methods).

Impact factor 0.87

  • Hide impact factor history
     
    Impact factor
  • 5-year impact
    0.00
  • Cited half-life
    6.00
  • Immediacy index
    0.16
  • Eigenfactor
    0.00
  • Article influence
    0.00
  • Website
    Journal of Science Education and Technology website
  • Other titles
    Journal of science education and technology (Online)
  • ISSN
    1059-0145
  • OCLC
    44168170
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as arXiv.org
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: This study aimed to determine students’ knowledge levels related to specific astronomy concepts and the effect of a planetarium environment on teaching. The study sample included seventh-grade (12–13 years old) students. For this purpose, 240 students of various socioeconomic and cultural levels from six schools (two in the city center, two in the districts and two in the villages) were enrolled in the study. The pretest–posttest control group quasi-experimental design was used in the study. The experimental and control groups were generated by random assignment. The “Solar System and Beyond” unit was selected. In the experimental group, the unit was taught with the use of a planetarium environment, whereas the same unit was taught to the control group students in a classroom environment. A test consisting of 14 multiple-choice questions was used as the pretest and posttest at the beginning and end of the unit. The data obtained were evaluated using the SPSS 20.0 software package program. The study results showed that teaching astronomical concepts in a planetarium environment was more effective than in a classroom environment. The study also revealed that students in the planetarium-assisted group were more successful in comprehending subjects that require 3D thinking, a reference system, changing the time and observation of periodic motion than those in control group.
    Journal of Science Education and Technology 02/2015; 24(1).
  • [Show abstract] [Hide abstract]
    ABSTRACT: In Turkey and many other countries, the importance of the interactive whiteboard (IWB) is increasing, and as a result, projects and studies are being conducted regarding the use of the IWB in classrooms. Accordingly, in these countries, many issues are being researched, such as the IWB’s contribution to the education process, its use in classroom settings and problems that occur when using the IWB. In this context, the research and analysis of studies regarding the use of the IWB have important implications for educators, researchers and teachers. This study aims to review and analyze studies conducted regarding the use of the IWB in the field of science. Accordingly, as a thematic review of the research was deemed appropriate, extant articles available in the literature were analyzed using a matrix that consisted of general features (type of journal, year and demographic properties) and content features (rationales, aims, research methods, samples, data collections, results and suggestions). According to the findings, it was concluded that the studies regarding the use of IWBs were conducted due to deficiencies in the current literature. However, there are rare studies in which the reasons for the research were associated with the nature of science education. There were also studies that focused on the effects of the IWB on student academic success and learning outcomes. Within this context, it is evident that there is a need for further research concerning the use of IWBs in science education and for studies regarding the effect of IWBs on students’ skills.
    Journal of Science Education and Technology 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Developing solutions for complex issues such as global climate change requires an understanding of the mechanisms involved. This study reports on the impact of a technology-enhanced unit designed to improve understanding of global climate change, its mechanisms, and their relationship to everyday energy use. Global Climate Change, implemented in the Web-based Inquiry Science Environment (WISE), engages sixth-grade students in conducting virtual investigations using NetLogo models to foster an understanding of core mechanisms including the greenhouse effect. Students then test how the greenhouse effect is enhanced by everyday energy use. This study draws on three data sources: (1) pre- and post-unit interviews, (2) analysis of embedded assessments following virtual investigations, and (3) contrasting cases of two students (normative vs. non-normative understanding of the greenhouse effect). Results show the value of using virtual investigations for teaching the mechanisms associated with global climate change. Interviews document that students hold a wide range of ideas about the mechanisms driving global climate change. Investigations with models help students use evidence-based reasoning to distinguish their ideas. Results show that understanding the greenhouse effect offers a foundation for building connections between everyday energy use and increases in global temperature. An impediment to establishing coherent understanding was the persistence of an alternative conception about ozone as an explanation for climate change. These findings illustrate the need for regular revision of curriculum based on classroom trials. We discuss key design features of models and instructional revisions that can transform the teaching and learning of global climate change.
    Journal of Science Education and Technology 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Emergent technologies are commonly characterized as involving cutting-edge developments while lacking wide-scale public implementation. Although currently prevalent in many applications, gene technology is often considered emergent in that the science changes so rapidly. Science educators at all levels of formal education are faced with a unique challenge of facilitating student understanding of gene technology (in comparison with more established content) as well as integrating some of the more controversial socioscientific aspects of such content into the curricula. Much of the literature regarding student understanding of biotechnology has focused on development of student attitudes toward the field and the impact of this on their learning. However, there has, of yet, been no unifying framework in the literature regarding what is meant by attitudes toward gene technology. This article reviews the current scholarship (38 empirical studies published between 1990 and 2011) on the measurement of student attitudes toward biotechnology in order to highlight major themes present within the literature. Items from all reviewed studies were collected, coded, and sorted for construction of a comprehensive instrument representing the conceptualizations of attitudes toward gene technology in all 38 studies. Factor analytic techniques were used as a tool to reduce and categorize measurement items. Results provided a framework of five factors that help describe student attitudes toward biotechnology across all the studies. This emergent framework of factors is proposed as a useful means to standardize the discourse in future research.
    Journal of Science Education and Technology 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current science education reforms and policy documents highlight the importance of environmental awareness and perceived need for activism. As “environmental problems are socially constructed in terms of their conceptualized effects on individuals, groups, other living things and systems research based on constructivist principles provides not only a coherent framework in which to theorize about learning, but also a context for understanding socially constructed issues” (Palmer and Suggate in Res Pap Educ 19(2), 2004, p. 208). This research study investigated the impacts of the learning processes structured based on the theories of constructionism and social constructivism on students’ environmental awareness and perceived need for activism. Students constructed multimedia artifacts expressing their knowledge, attitudes, awareness, and activism about environmental issues through a constructionist design process. In addition, a social networking site was designed and used to promote social interaction among students. Twenty-two high school environmental science students participated in this study. A convergent mixed methods design was implemented to allow for the triangulation of methods by directly comparing and contrasting quantitative results with qualitative findings for corroboration and validation purposes. Using a mixed method approach, quantitative findings are supported with qualitative data (student video projects, writing prompts, blog entries, video projects of the students, observational field notes, and reflective journals) including spontaneous responses in both synchronous and asynchronous conversations on the social network to provide a better understanding of the change in students’ environmental awareness and perceived need for activism. The findings of the study indicated that students’ environmental awareness and perceived need for activism were improved at different scales (personal, community, global) throughout the constructionist and social constructivist learning processes.
    Journal of Science Education and Technology 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: There has been increased recognition in the past decades that model-based inquiry (MBI) is a promising approach for cultivating deep understandings by helping students unite phenomena and underlying mechanisms. Although multiple technology tools have been used to improve the effectiveness of MBI, there are not enough detailed examinations of how agent-based programmable modeling (ABPM) tools influence students’ MBI learning. The present collective case study sought to contribute by closely investigating ABPM-supported MBI processes for 8th grade students learning about natural selection and adaptation. Eight 8th grade students in groups of 2–3 spent 15 h during a span of 4 weeks collaboratively programming simulations of adaptation based on the natural selection model, using an ABPM tool named NetLogo. The entire programming processes of these learning groups, up to 50 h, were videotaped and then analyzed using mixed methods. Our analysis revealed that the programming task created a context that calls for nine types of MBI actions. These MBI actions were related to both phenomena and the underlying model. Results also showed that students’ programming processes took place in consecutive programming cycles and aligned with iterative MBI cycles. A framework for ABPM-supported MBI learning is proposed based upon the findings. Implications in developing MBI instruction involving ABPM tools are discussed.
    Journal of Science Education and Technology 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the past decade, reform efforts in science education have increasingly attended to engaging students in scientific practices such as scientific modeling. Engaging students in scientific modeling can help them develop their epistemologies by allowing them to attend to the roles of mechanism and empirical evidence when constructing and revising models. In this article, we present our in-depth case study of how two fifth graders—Brian and Joon—who were students in a public school classroom located in a Midwestern state shifted their epistemologies in modeling as they participated in the enactment of a technologically enhanced, model-based curriculum unit on evaporation and condensation. First, analyses of Brian’s and Joon’s models indicate that their epistemologies in modeling related to explanation and empirical evidence shifted productively throughout the unit. Additionally, while their initial and final epistemologies in modeling were similar, the pathways in which their epistemologies in modeling shifted differed. Next, analyses of the classroom activities illustrate how various components of the learning ecology including technological tools, the teacher’s scaffolding remarks, and students’ collective activities and conversations, were marshaled in the service of the two students’ shifting epistemologies in modeling. These findings suggest a nuanced view of individual learners’ engagement in scientific modeling, their epistemological shifts in the practice, and the roles of technology and other components of a modeling-oriented learning environment for such shifts.
    Journal of Science Education and Technology 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present study investigated the impact of a Science, Technology, Engineering, Mathematics and Health (STEM+H) university-based pipeline program, the Careers in Health and Medical Professions Program, over the course of two summers among predominantly African-American high school students recruited from urban school districts (N = 155). Based on a mixed methods approach, results indicated that youth made significant gains in both academic and career knowledge. Furthermore, youth generally rated the program’s sessions favorably, but also rated sessions with varying levels of satisfaction. The limitations and implications for program delivery and evaluation methods among pipeline programs are discussed.
    Journal of Science Education and Technology 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The basic premise underlying this research is that scientific phenomena are best learned by creating an external representation that complies with the complex and dynamic nature of such phenomena. Effective representations are assumed to incorporate three key characteristics: they are graphical, dynamic, and provide a pre-specified outline of the domain. This study examined the impact of these characteristics on performance and learning. High school students first read an instructional text about glucose–insulin regulation and then created a representation of its content. Representations differed regarding the key characteristics such that the summary (n = 15), concept map (n = 16), model (n = 23), and outlined model (n = 21) all incorporated one additional characteristic compared to their precursor. Main results indicated learning effects in each of these four conditions. Furthermore, creating a model was found to enhance students’ learning more than creating a concept map, and students who completed an outlined model were found to learn more than those who created a model from scratch. In conclusion, this study does not univocally verify the necessity of all key characteristics individually, but the results do show that a representational format that combines all key characteristics enhances learning more than other formats.
    Journal of Science Education and Technology 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The present paper informs about an analysis of students’ conceptions about car braking distances and also presents one of the novel methods of learning: an interactive computer program Tracker that we used to analyse the process of braking of a car. The analysis of the students’ conceptions about car braking distances consisted in obtaining their estimates of these quantities before and after watching a video recording of a car braking from various initial speeds to a complete stop and subsequent application of mathematical statistics to the obtained sets of students’ answers. The results revealed that the difference between the value of the car braking distance estimated before watching the video and the real value of this distance was not caused by a random error but by a systematic error which was due to the incorrect students’ conceptions about the car braking process. Watching the video significantly improved the students’ estimates of the car braking distance, and we show that in this case, the difference between the estimated value and the real value of the car braking distance was due only to a random error, i.e. the students’ conceptions about the car braking process were corrected. Some of the students subsequently performed video analysis of the braking processes of cars of various brands and under various conditions by means of Tracker that gave them exact knowledge of the physical quantities, which characterize a motor vehicle braking. Interviewing some of these students brought very positive reactions to this novel method of learning.
    Journal of Science Education and Technology 12/2014; 23(6).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The challenge of preparing students for the information age has prompted administrators to increase technology in the public schools. Yet despite the increased availability of technology in schools, few teachers are integrating technology for instructional purposes. Preservice teachers must be equipped with adequate content knowledge of technology to create an advantageous learning experience in science classrooms. To understand preservice teachers’ conceptions of technology integration, this research study explored 15 elementary science methods students’ definitions of technology and their attitudes toward incorporating technology into their teaching. The phenomenological study took place in a science methods course that was based on a constructivist approach to teaching and learning science through science activities and class discussions, with an emphasis on a teacher beliefs framework. Data were collected throughout the semester, including an open-ended pre/post-technology integration survey, lesson plans, and reflections on activities conducted throughout the course. Through a qualitative analysis, we identified improvements in students’ technology definitions, increased technology incorporation into science lesson plans, and favorable attitudes toward technology integration in science teaching after instruction. This research project demonstrates that positive changes in beliefs and behaviors relating to technology integration in science instruction among preservice teachers are possible through explicit instruction.
    Journal of Science Education and Technology 12/2014; 23(6).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Informal environments provide students with unique experiences that allow them to actively participate in activities while promoting a positive attitude toward and an increased interest in science. One way to enhance informal science experiences is through the integration of mobile technologies. This integration is particularly useful in engaging underrepresented students in learning science. Our informal environmental science program engages underrepresented, fifth-grade students in an informal learning environment supplemented with mobile tablet technology (iPads). The purpose of this study was to explore how fifth-grade students interacted with nature using mobile technology during a nature hike series. Participants included 55 fifth-grade students from two low-income schools. We found that students used the mobile technology to explore nature and stay engaged throughout the hike. The iPads were used as references, data collectors, and engagement tools. Students had an intense desire in returning to the site and responded positively toward interacting with nature. Prior research has indicated that students in this age group are likely to lose interest in science and the incorporation of field-friendly technology that engages students with nature, not technology alone, is a useful tool for keeping students interested in science.
    Journal of Science Education and Technology 12/2014; 23(6).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Many educational researchers have investigated how best to support conceptual learning in science education. In this study, the aim was to design learning materials using Physlets, small computer simulations, and to evaluate the effectiveness of these materials in supporting conceptual learning in secondary school physics. Students were taught in two different physics courses (conditions): one group of students (n = 40) was taught using Physlet-based learning materials, and the other (n = 40) was taught using expository instruction. To evaluate the designed materials, we assessed students' thinking skills in relation to physics after the course and analyzed the results using an independent t test, multiple regression analyses, and one-way analysis of covariance. The results showed better thinking skills among students in the experimental group and supported a clear relationship between the physics course using Physlet-based materials and this improvement (p < 0.05). These results indicate that properly designed Physlet-based materials can effectively support conceptual learning.
    Journal of Science Education and Technology 10/2014; 23(5, 2014):658-667.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Most physics professors would agree that the lab experiences students have in introductory physics are central to the learning of the concepts in the course. It is also true that these physics labs require time and money for upkeep, not to mention the hours spent setting up and taking down labs. Virtual physics lab experiences can provide an alternative or supplement to these traditional hands-on labs. However, physics professors may be very hesitant to give up the hands-on labs, which have been such a central part of their courses, for a more cost and time-saving virtual alternative. Thus, it is important to investigate how the learning from these virtual experiences compares to that acquired through a hands-on experience. This study evaluated a comprehensive set of virtual labs for introductory level college physics courses and compared them to a hands-on physics lab experience. Each of the virtual labs contains everything a student needs to conduct a physics laboratory experiment, including: objectives, background theory, 3D simulation, brief video, data collection tools, pre- and postlab questions, and postlab quiz. This research was conducted with 224 students from two large universities and investigated the learning that occurred with students using the virtual labs either in a lab setting or as a supplement to hands-on labs versus a control group of students using the traditional hands-on labs only. Findings from both university settings showed the virtual labs to be as effective as the traditional hands-on physics labs.
    Journal of Science Education and Technology 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Universities in Taiwan can be divided into two major categories of comprehensive universities and technological universities. Students studying engineering majors in comprehensive universities are often recruited from academic high schools while those in technological universities tend to be recruited from vocational high schools. The purpose of this research was to investigate differences in learning efficacy between college students with academic backgrounds and those with vocational backgrounds. Results indicated no significant differences in cognition between the two groups of students. Additionally, students with vocational school backgrounds performed better in comprehension skills compared with those with academic backgrounds and were more able to apply acquired knowledge to practical tasks according to path analysis studies and the Mann–Whitney U test.
    Journal of Science Education and Technology 08/2014;