Journal of Science Education and Technology Impact Factor & Information

Publisher: Springer Verlag

Journal description

Journal of Science Education and Technology provides a wide variety of papers aimed at improving and enhancing science education at all levels in the United States. The journal's original peer-reviewed articles foster the communication of new ideas and research to correct the problems that hinder scientific instruction. The broad scope of this ambitious quarterly encompasses science education from kindergarten to the college level across a wide range of disciplines. Areas of coverage include: disciplinary (learning processes related to the acquisition and assessment of biology chemistry physics computer science and engineering); technological (the latest computer video audio and print technology that plays a role in scientific advancement understanding and information delivery); organizational (legislation implementation administration and teacher enhancement issues); and practical (development demonstration and evaluation of effective educational methods).

Current impact factor: 1.21

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.214
2013 Impact Factor 0.869
2012 Impact Factor 0.94
2011 Impact Factor 0.865
2010 Impact Factor 0.804

Impact factor over time

Impact factor

Additional details

5-year impact 1.25
Cited half-life 6.30
Immediacy index 0.05
Eigenfactor 0.00
Article influence 0.44
Website Journal of Science Education and Technology website
Other titles Journal of science education and technology (Online)
ISSN 1059-0145
OCLC 44168170
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this study was to examine the effect of a digitized podcast to deliver read-aloud testing accommodations on mobile devices to students with disabilities and reading difficulties. The total sample for this study included 47 middle school students with reading difficulties. Of the 47 students, 16 were identified as students with disabilities who received special education services. Participants were randomly assigned to three experimental testing conditions, standard administration, teacher-controlled read-aloud in traditional group delivery format, and student-controlled read-aloud delivered as a podcast and accessed on a mobile device, and given sample end-of-year science assessments. Based on a factorial analysis of variances, with test conditions and student status as the fixed factors, both student groups demonstrated statistically significant gains based on their testing conditions. Results support the use of podcast delivery as a viable alternative to the traditional teacher-delivered read-aloud test accommodation. Conclusions are discussed in the context of universal design for learning testing accommodations for future research and practice.
    Journal of Science Education and Technology 11/2015; DOI:10.1007/s10956-015-9591-3
  • [Show abstract] [Hide abstract]
    ABSTRACT: Rooted in science education and science communication studies, this study examines 4th and 5th grade students’ perceptions of science information sources (SIS) and their use in communicating science to students. It combines situated learning theory with uses and gratifications theory in a qualitative phenomenological analysis. Data were gathered through classroom observations and interviews in four Turkish elementary schools. Focus group interviews with 47 students and individual interviews with 17 teachers and 10 parents were conducted. Participants identified a wide range of SIS, including TV, magazines, newspapers, internet, peers, teachers, families, science centers/museums, science exhibitions, textbooks, science books, and science camps. Students reported using various SIS in school-based and non-school contexts to satisfy their cognitive, affective, personal, and social integrative needs. SIS were used for science courses, homework/project assignments, examination/test preparations, and individual science-related research. Students assessed SIS in terms of the perceived accessibility of the sources, the quality of the content, and the content presentation. In particular, some sources such as teachers, families, TV, science magazines, textbooks, and science centers/museums (“directive sources”) predictably led students to other sources such as teachers, families, internet, and science books (“directed sources”). A small number of sources crossed context boundaries, being useful in both school and out. Results shed light on the connection between science education and science communication in terms of promoting science learning.
    Journal of Science Education and Technology 11/2015; DOI:10.1007/s10956-015-9590-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: We will describe a one-quarter pilot algebra-based introductory physics course for pre-health and life science majors. The course features videos with biomedical experts and cogent biomedically inspired physics content. The materials were used in a flipped classroom as well as an all-online environment where students interacted with multimedia materials online and prior to engaging in classroom activities. Pre-lecture questions on both the medical content covered in the video media and the physics concepts in the written material were designed to engage students and probe their understanding of physics. The course featured group discussion and peer-lead instruction. Following in-class instruction, students engaged with homework assignments which explore the connections of physics and the medical field in a quantitative manner. Course surveys showed a positive response by the vast majority of students. Students largely indicated that the course helped them to make a connection between physics and the biomedical field. The biomedical focus and different course format were seen as an improvement to previous traditional physics instruction.
    Journal of Science Education and Technology 10/2015; DOI:10.1007/s10956-015-9588-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: Developing plant identification skills is an important part of the curriculum of any botany course in higher education. Frequent practice with dried and fresh plants is necessary to recognize the diversity of forms, states, and details that a species can present. We have developed a web-based assessment system for mobile devices that is able to pose appropriate questions according to the location of the student. A student’s location can be obtained using the device position or by scanning a QR code attached to a dried plant sheet in a herbarium or to a fresh plant in an arboretum. The assessment questions are complemented with elaborated feedback that, according to the students’ responses, provides indications of possible mistakes and correct answers. Three experiments were designed to measure the effectiveness of the formative assessment using dried and fresh plants. Three questionnaires were used to evaluate the system performance from the students’ perspective. The results clearly indicate that formative assessment is objectively effective compared to traditional methods and that the students’ attitudes towards the system were very positive.
    Journal of Science Education and Technology 10/2015; DOI:10.1007/s10956-015-9586-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this work was to share our findings in using the Kinect technology to facilitate the understanding of basic kinematics with middle school science classrooms. This study marks the first three iterations of this design-based research that examines the pedagogical potential of using the Kinect technology. To this end, we explored the impact of using the Kinect in conjunction with an SDK Physical Virtual Graphing program on students’ understanding of displacement, velocity and acceleration compared to students who conducted more traditional inquiry of the same concepts. Results of this study show that, while there may be some affordances to be gained from integrating this technology, there is a need for a scaffolded approach that helps students to understand the “messiness” of the data collected. Further, meta-cognitive activities, such as reflective opportunities, should be integrated into the inquiry experiences in order to scaffold student learning and reinforce concepts being presented. While the Kinect did work to generate large-scale visualization and embodied interactions that served as a mechanism for student understanding, this study also suggests that a complementary approach that includes both the use of hands-on inquiry and the use of the Kinect sensor, with each activity informing the other, could be a powerful technique for supporting students’ learning of kinematics.
    Journal of Science Education and Technology 10/2015; DOI:10.1007/s10956-015-9582-4

  • Journal of Science Education and Technology 10/2015; DOI:10.1007/s10956-015-9585-1

  • Journal of Science Education and Technology 10/2015; DOI:10.1007/s10956-015-9584-2
  • [Show abstract] [Hide abstract]
    ABSTRACT: Previous research on multiple external representations (MER) indicates that sequencing representations (compared with presenting them as a whole) can, in some cases, increase conceptual understanding if there is interference between internal and external representations. We tested this mechanism by sequencing different combinations of scientific and abstract chemical representations and presenting them to 133 learners with low prior knowledge of the represented domain. The results provide insight into three separate mechanisms of learning with MER. (1) A memory (number of ideas reproduced) and (2) an accuracy (correctness of these ideas) effects occur when two representations are presented in a sequence. An accuracy and a (3) redundancy (number of redundant ideas remembered) effects occur when three representations are presented in a sequence. A necessary precondition for these effects is that descriptive formats are placed before depictive formats. The identified effects are analyzed in terms of the concept of cognitive dissonance.
    Journal of Science Education and Technology 10/2015; 24(5). DOI:10.1007/s10956-015-9557-5
  • [Show abstract] [Hide abstract]
    ABSTRACT: The primary aim of the study was to examine whether performance on a science assessment in an immersive virtual environment was associated with changes in scientific inquiry self-efficacy. A secondary aim of the study was to examine whether performance on the science assessment was equitable for students with different levels of computer game self-efficacy, including whether gender differences were observed. We examined 407 middle school students’ scientific inquiry self-efficacy and computer game self-efficacy before and after completing a computer game-like assessment about a science mystery. Results from path analyses indicated that prior scientific inquiry self-efficacy predicted achievement on end-of-module questions, which in turn predicted change in scientific inquiry self-efficacy. By contrast, computer game self-efficacy was neither predictive of nor predicted by performance on the science assessment. While boys had higher computer game self-efficacy compared to girls, multi-group analyses suggested only minor gender differences in how efficacy beliefs related to performance. Implications for assessments with virtual environments and future design and research are discussed.
    Journal of Science Education and Technology 10/2015; 24(5). DOI:10.1007/s10956-015-9558-4
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite attempts to generate interest in science and technology careers, US students continue to show reduced interest in science, technology, engineering and mathematics (STEM) majors at the collegiate level. If girls are not engaged in STEM learning by the middle school level, studies show that they are even less likely to choose a science- or engineering-related major. This article presents results from a workshop for 7th and 8th grade girls designed to promote knowledge building in the area of sustainability and alternative energy use in transportation and to stimulate greater interest in STEM subjects. The workshop based on research conducted at University X focused on basic concepts of electric vehicles and electric vehicles’ batteries. Tests were conducted to evaluate the students’ knowledge and perceptions of electric vehicles and to determine the impact of the workshop. Early exposure to meaningful engineering experiences for these young girls may boost interest and the eventual pursuit of engineering and technology education paths.
    Journal of Science Education and Technology 10/2015; 24(5). DOI:10.1007/s10956-015-9555-7
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, a specific implementation of a so-called experimental or open-ended laboratory is proposed and evaluated. Keeping in mind the scheduling limitations imposed by the context, first-year engineering physics laboratory practices have been revised in order to facilitate acquisition of the skills that are required in the experimental work. These skills concern different conceptual and procedural abilities related to designing experiments, taking measurements, analyzing the results and reporting properly the whole process. The employed approach is described, and the achieved results are evaluated by a series of tests at the beginning and end of the academic year. Additionally, the students’ laboratory reports are used to quantify the evolution of acquiring these scientific skills. The evaluation of the results obtained from the aforementioned tests and laboratory reports gives enlightening information about students’ apprehension of the experimental method itself, as well as the difficulties they find in each of the different, complex tasks that they must carry out during this process.
    Journal of Science Education and Technology 10/2015; 24(5). DOI:10.1007/s10956-015-9551-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: Situating science concepts in concrete and authentic contexts, using information and communications technologies, including multimodal modeling tools, is important for promoting the development of higher-order thinking skills in learners. However, teachers often struggle to integrate emergent multimodal models into a technology-rich informal learning environment. Our design-based research co-designs and develops engaging, immersive, and interactive informal learning activities called “Embodied Modeling-Mediated Activities” (EMMA) to support not only Singaporean learners’ deep learning of astronomy but also the capacity of teachers. As part of the research on EMMA, this case study describes two prospective teachers’ co-design processes involving multimodal models for teaching and learning the concept of the seasons in a technology-rich informal learning setting. Our study uncovers four prominent themes emerging from our data concerning the contextualized nature of learning and teaching involving multimodal models in informal learning contexts: (1) promoting communication and emerging questions, (2) offering affordances through limitations, (3) explaining one concept involving multiple concepts, and (4) integrating teaching and learning experiences. This study has an implication for the development of a pedagogical framework for teaching and learning in technology-enhanced learning environments—that is empowering teachers to become active sense-makers using multimodal models.
    Journal of Science Education and Technology 10/2015; 24(5). DOI:10.1007/s10956-015-9550-z

  • Journal of Science Education and Technology 09/2015; DOI:10.1007/s10956-015-9580-6

  • Journal of Science Education and Technology 09/2015; DOI:10.1007/s10956-015-9579-z
  • [Show abstract] [Hide abstract]
    ABSTRACT: In spite of being readily available, photographs have played a minor and passive role in science classes. In our study, we present an active way of using photographs in classroom discussions with the use of a classroom response system (CRS) in middle school astronomy classes to teach the concepts of day–night and seasonal change. In this new pedagogical method, students observe objects or phenomena in photographs and use the information to develop understanding of the scientific concepts. They share their ideas in classroom discussion with the assistance of the CRS. Pre- and posttest results showed that the new pedagogy helped students overcome primitive conceptions and enhanced their understanding of the concepts. The observation of the rich details of photographs played three pedagogical roles in classroom discussion: easing students’ anxiety about learning a new scientific concept; continuous stimulus of learning; and as evidence or data.
    Journal of Science Education and Technology 08/2015; 24(4):496-508. DOI:10.1007/s10956-014-9539-z

  • Journal of Science Education and Technology 08/2015; DOI:10.1007/s10956-015-9578-0