Animal Biotechnology (ANIM BIOTECHNOL )

Publisher: Taylor & Francis


Animal Biotechnology is the first journal to cover the identification and manipulation of genes and their products, stressing applications in domesticated animals. The journal publishes full-length articles, short research communications, as well as appropriate reviews. The journal also provides a forum for regulatory or scientific issues related to cell and molecular biology, immunogenetics, transgenic animals, and microbiology.

  • Impact factor
    Show impact factor history
    Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    Animal Biotechnology website
  • Other titles
    Animal biotechnology (Online)
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Taylor & Francis

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 month embargo for STM, Behavioural Science and Public Health Journals
    • 18 month embargo for SSH journals
  • Conditions
    • Some individual journals may have policies prohibiting pre-print archiving
    • Pre-print on authors own website, Institutional or Subject Repository
    • Post-print on authors own website, Institutional or Subject Repository
    • Publisher's version/PDF cannot be used
    • On a non-profit server
    • Published source must be acknowledged
    • Must link to publisher version
    • Set statements to accompany deposits (see policy)
    • Publisher will deposit to PMC on behalf of NIH authors.
    • STM: Science, Technology and Medicine
    • SSH: Social Science and Humanities
    • 'Taylor & Francis (Psychology Press)' is an imprint of 'Taylor & Francis'
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: The adiponectin receptor 2 (ADIPOR2) is a receptor for both globular and full-length adiponectin. In the current study, two genetic variations in ADIPOR2 gene were identified in an F2 resource population of Gushi chicken and Anka broiler. Association analysis between the two SNPs and chicken performance traits were determined using the linear mixed model. The data revealed that the g.34490C > T mutation in intron 3 was significantly associated with liver weight and globulin, the g.35363T > C polymorphism in exon 5 was significantly associated with body weights at 6, 10, and 12 weeks of age. Both polymorphisms have no significant effects on serum glucose and fat-related traits. The g.34490C > T mutation might play an important role in regulating liver weight. The g.35363T > C polymorphism does contribute in a significant manner to growth traits at the medium and later development stage but it is uncertain whether it could be a molecular marker for liver disease.
    Animal Biotechnology 01/2015; 26(1):1-7.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Next generation sequencing of mitochondrial DNA (mtDNA) facilitates studies into the metabolic characteristics of production animals and their relation to production traits. Sequence analysis of mtDNA from pure-bred swine with highly disparate production characteristics (Mangalica Blonde, Mangalica Swallow-bellied, Meishan, Turopolje, and Yorkshire) was initiated to evaluate the influence of mtDNA polymorphisms on mitochondrial function. Herein, we report the complete mtDNA sequences of five Sus scrofa breeds and evaluate their position within the phylogeny of domestic swine. Phenotypic traits of Yorkshire, Mangalica Blonde, and Swallow-belly swine are presented to demonstrate their metabolic characteristics. Our data support the division of European and Asian breeds noted previously and confirm European ancestry of Mangalica and Turopolje breeds. Furthermore, mtDNA differences between breeds suggest function-altering changes in proteins involved in oxidative phosphorylation such as ATP synthase 6 (MT-ATP6), cytochrome oxidase I (MT-CO1), cytochrome oxidase III (MT-CO3), and cytochrome b (MT-CYB), supporting the hypothesis that mtDNA polymorphisms contribute to differences in metabolic traits between swine breeds. Our sequence data form the basis for future research into the roles of mtDNA in determining production traits in domestic animals. Additionally, such studies should provide insight into how mtDNA haplotype influences the extreme adiposity observed in Mangalica breeds.
    Animal Biotechnology 01/2015; 26(1):17-28.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mx1 protein is I type interferons (IFNs)-induced 76-kDa guanosine triphosphatases (GTPases) that belong to the dynamin superfamily of large GTPases. Mx1 proteins have attracted attention because some display antiviral activity against pathogenic RNA and DNA viruses. Meanwhile, Mx1 gene generally exists in organisms or cells of mammalian, fish and chicken. Blocking a wide range of RNA virus replication by inhibiting nuclear viral mRNA synthesis is a unique property of Mx1 protein. In order to investigate a novel prevention measure against foot-and-mouth disease virus (FMDV) and bovine viral diarrhea virus (BVDV), which frequently break out in Xinjiang Uygur Autonomous Region of China, we investigated the effects of porcine Mx1 protein on FMDV and BVDV replication by measuring viral reverse transcriptase activity at various time intervals. In our study, Mx1 protein was overexpressed in BHK-21 and MDBK cells mediated by lentivirus prior to infect with FMDV and BVDV. FMDV and BVDV replication levels were monitored by quantitative real-Time PCR. The results showed porcine Mx1 overexpression significantly inhibited both FMDV and BVDV replication within 12 and 36 hours post-infection (pi). The finding may provide a new therapeutic approach for preventing from FDMV and BVDV infection.
    Animal Biotechnology 01/2015; 26(1):73-79.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Infectious Bursal Disease (IBD) is major threat to poultry industry. It causes severe immunosuppression and mortality in chicken generally at 3 to 6 weeks of age. RNA intereference (RNAi) emerges as a potent gene regulatory tool in last few years. The present study was conducted to evaluate the efficiency of RNAi to inhibit the IBD virus (IDBV) replication in-vitro. VP2 gene of virus encodes protein involved in capsid formation, cell entry and induction of protective immune responses against it. Thus, VP2 gene of IBDV is the candidate target for the molecular techniques applied for IBDV detection and inhibition assay. In this study, IBDV was isolated from field cases and confirmed by RT-PCR. The virus was then adapted on chicken embryo fibroblast cells (CEF) in which it showed severe cytopathic effects (CPE). The short hairpin RNA (shRNAs) constructs homologous to the VP2 gene were designed and one, having maximum score and fulfilling maximum Reynolds criteria, was selected for evaluation of effective inhibition. Selected shRNA construct (i.e., VP2-shRNA) was observed to be the most effective for inhibiting VP2 gene expression. Real time PCR analysis was performed to measure the relative expression of VP2 gene in different experimental groups. The VP2 gene was less expressed in virus infected cells co-transfected with VP2-shRNA as compared to mock transfected cells and IBDV+ cells (control) at dose 1.6 µ g. The result showed ∼95% efficient down regulation of VP2 gene mRNA in VP2-shRNA treated cells. These findings suggested that designed shRNA construct achieved high level of inhibition of VP2 gene expression in-vitro.
    Animal Biotechnology 01/2015; 26(1):58-64.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The removal of crossbred bulls from semen collection programs due to the production of poor quality semen causes substantial monetary losses to the dairy industry. Seminal quality, a quantitative trait, is greatly influenced by genome level variations. Deletion and/or duplication of Y chromosomal genes and subsequent changes in gene copy number have a major role in determining spermatogenic efficiency and, therefore, seminal quality. In this study, copy numbers of three Y chromosomal genes TSPY, DDX3Y, and USP9Y in genomic DNA were estimated and compared in two groups of crossbred (Bos taurus × Bos indicus) bulls of ten each, superior and inferior quality semen producing bulls, which were classified based on their seminal quality parameters. For TSPY gene, the inferior quality semen donor group has significantly lower copy number than superior quality semen donor group (p < 0.05). No significant difference was found in DDX3Y and USP9Y gene copy numbers between two groups (p > 0.05). In conclusion, this study demonstrates that the copy number of TSPY, a Y chromosomal spermatogenesis related gene, may be an important determinant to predict the quality of bull semen, facilitating better selection of bulls in a herd for semen collection program.
    Animal Biotechnology 01/2015; 26(1):65-72.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Heat shock proteins (Hsp) play crucial role in cellular thermotolerance and heat stress response. In the present work, Allele specific PCR (AS-PCR) was standardized to detect the nucleotide polymorphism within the HSP90AB1 gene (SNP g.4338T>C) in Indian breeds of dairy cattle. The identified genotypes were associated with relative thermotolerance in terms of physiological parameters and milk production traits. The results of the experiments revealed that the genotype frequency of CC, CT, and TT for Sahiwal were 0.05, 0.78, and 0.17, respectively, and in Frieswal, the frequencies were 0.20, 0.70, and 0.10, respectively. The average rectal temperature (ART) and average respiration rates (ARR) were recorded during peak summer stress and heat tolerance coefficient (HTC) was calculated. The association studies indicated that TT genotypes had significantly (P < 0.01) higher HTC and lower ARR values than CT and CC in both the breeds. The TT genotype animals also had better production parameter in terms of total milk yield (TMY) (P < 0.01). These findings may partly suggest the role of HSP90AB1 polymorphisms in the regulation of heat stress response and consequent effect on production traits. Nevertheless, involvement of other regulatory mechanisms cannot be overruled.
    Animal Biotechnology 01/2015; 26(1):45-50.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stearoyl-CoA desaturase (SCD1 gene) is an enzyme responsible for the endogenous conversion of saturated fatty acid into monounsaturated fatty acids. The objective of this study was to assess the association of a single nucleotide polymorphism (SNP) in the SCD1 gene with the fatty acid composition of beef intramuscular fat of a Spanish commercial bull population (n = 155) finished with two different diets. The results suggested that the marker could be used as a candidate gene to obtain a healthier final product.
    Animal Biotechnology 01/2015; 26(1):40-44.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aldoketoreductase 1B5 (AKR1B5), a member of the Aldoketoreductase family, is involved in the production of Prostaglandin F2α (PGF2α) as one of vital prostaglandin F synthase (PGFS). PGs (Prostaglandins) play a crucial role in female reproductive system. In the present study, we cloned and characterized the full-length open reading frame of AKR1B5 gene in Black Bengal (BB) goat. The complete coding sequence of AKR1B5 comprises an entire open reading frame of 951 bp, encoding 316 amino acid (AA) residues. BB AKR1B5 showed >82.9% identity with that of cattle, rabbit, human, and rat at nucleotide and amino acid levels, respectively. Further, a systematic study of AKR1B5 sequence evolution was also conducted using Phylogenetic Analysis by Maximum Likelihood (PAML), entropy plot, and Blossum 62 in a phylogenetic context. Analysis of nonsynonymous to synonymous nucleotide substitution rate ratios (Ka/Ks) revealed that negative selection may have been operating on this gene during evolution in goat, cattle, rabbit, human, and rat, which showed its conservation across species. Further, expression of AKR1B5 was determined by quantitative real-time PCR in goat endometrial tissues at different stages of the estrous cycle and early pregnancy. Our results indicated its high expression at luteolytic phase (stage III; day 16-21) during the estrous cycle. However, during early (day ∼30-40) pregnancy the expression was highest as compared to estrous cycle.
    Animal Biotechnology 01/2015; 26(1):8-16.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ovarian transvaginal ultrasonography (OTU) has been used world-wide for commercial ovum pick-up programs for in vitro embryo production in elite herds, providing an excellent model for the elucidation of factors controlling bovine oocyte developmental competence. Noninvasive sampling and treatment of ovarian structures is easily accomplished with bovine OTU techniques providing a promising system for in vivo delivery of transgenes directly into the ovary. The current review summarizes existing bovine OTU models and provides prospective applications of bovine OTU to undertake research in reproductive topics of biomedical relevance, with special emphasis on the development of in vivo gene transfer strategies.
    Animal Biotechnology 01/2014; 25(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of the present study was to compare mRNA levels of myostatin (MSTN), myogenin (MyoG), and fiber type compositions in terms of myosin heavy chain (MyHC) in skeletal muscles of two rabbit breeds with different body sizes and growth rates. Longissimus dorsi and biceps femoris muscles of 16 Californian rabbits (CW) and 16 Germany great line of ZIKA rabbits (GZ) were collected at the ages of 35d and 84d (slaughter age). The results showed that the live weights of GZ rabbits of 35d and 84d old were approximately 36% and 26% greater than those of CW rabbits, respectively. Quantitative real-time PCR analysis revealed that at the age of 84d GZ rabbits contained significantly lower MSTN mRNA level and higher MyoG mRNA level in both Longissimus dorsi and biceps femoris muscles than CW rabbits, and mRNA levels of MSTN and MyoG exhibited opposite changes from the age of 35d to 84d, suggesting that GZ rabbits were subjected to less growth inhibition from MSTN at slaughter age, which occurred most possibly in skeletal muscles. Four types of fiber were identified by real-time PCR in rabbit muscles, with MyHC-1 and MyHC-2D, MyHC-2B were the major types in biceps femoris and Longissimus dorsi muscles, respectively. At the age of 84d, GZ rabbits contained greater proportion of MyHC-1 and decreased proportion of MyHC-2D and decreased lactate dehydrogenase activity in biceps femoris than CW rabbits, and the results were exactly opposite in Longissimus dorsi, suggesting that GZ rabbits show higher oxidative capacity in biceps femoris muscle than CW rabbits. In conclusion, the trends of mRNA levels of MSTN and fiber types in GZ rabbits' skeletal muscles might be consistent with the putative fast growth characteristic of GZ rabbits compared to CW rabbits.
    Animal Biotechnology 01/2014; 25(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Toll-like receptor 4 gene (TLR4) that recognizes the Gram negative bacterial ligand LPS was sequenced in the Bos indicus Sahiwal cattle breed. Ninety four single nucleotide polymorphisms (SNPs) were detected within 10.8 kb gene region. Seventeen of the SNPs were in the coding regions and the one at position 9589(A > G) in exon3 resulted in an amino acid change from Valine to Isoleucine. These SNPs led to generation of 27 TLR4 gene haplotypes. All the Sahiwal animals studied presently showed the occurrence of the genotype CC at gene position 9662, which codes for the amino acid threonine at position 674 of the TLR4 protein, and which had been reported to be associated with lower somatic cell score and, therefore, a lower susceptibility to mastitis, in Taurus cattle. This nucleotide configuration of the Toll-like receptor 4 gene of the Bos indicus Sahiwal cattle breed could possibly indicate toward a lower susceptibility to mastitis in the Sahiwal animals. Monocyte chemo-attractant protein-1 (CCL2) gene encoding for small inducible cytokine A2 that belongs to the CC chemokine family was also sequence characterized in these Sahiwal animals. The CCL2 gene was observed to have 12 polymorphic sites in 3.3 kb region of which one SNP at position 2500 (A > G) in exon 3 resulted in amino acid change from Valine to Isoleucine at position 46 of the mature CCL2 peptide. Seventeen haplotypes of the CCL2 gene were predicted corresponding to 12 genotypes detected.
    Animal Biotechnology 01/2014; 25(4).
  • [Show abstract] [Hide abstract]
    ABSTRACT: In recent years, the population size of Taiwan yellow cattle has drastically declined, even become endangered. A preservation project, Taiwan Yellow Cattle Genetic Preservation Project (TYCGPP), was carried out at the Livestock Research Institute (LRI) Hengchun branch (1988–present). An analysis of intra- and inter- population variability was performed to be the first step to preserve this precious genetic resource. In this work, a total number of 140 individuals selected from the five Taiwan yellow cattle populations were analyzed using 12 microsatellite markers (loci). These markers determined the level of genetic variation within and among populations as well as the phylogenetic structure. The total number of alleles detected (122, 10.28 per locus) and the expected heterozygosity (0.712) indicated that these five populations had a high level of genetic variability. Bayesian cluster analysis showed that the most likely number of groups was 2 (K = 2). Genetic differentiation among clusters was moderate (F ST = 0.095). The result of AMOVA showed that yellow cattle in Taiwan had maintained a high level of within-population genetic differentiation (91%), the remainder being accounted for by differentiation among subpopulations (4%), and by differentiation among regions (5%). The results of STRUCTURE and principal component analysis (PCA) revealed two divergent clusters. The individual unrooted phylogenetic tree showed that some Kinmen yellow cattle in the Hengchun facility (KMHC individuals) were overlapped with Taiwan yellow cattle (TW) and Taiwan yellow cattle Hengchun (HC) populations. Also, they were overlapped with Kinmen × Taiwan (KT) and Kinmen yellow cattle (KM) populations. It is possible that KMHC kept similar phenotypic characteristics and analogous genotypes between TW and KM. A significant inbreeding coefficient (F IS = 0.185; P Keywords: Genetic diversity; Microsatellite marker; Population structure; Taiwan yellow cattle Document Type: Research Article DOI: Affiliations: 1: Hengchun Branch, Livestock Research Institute, Council of Agriculture, Executive Yuan, Hengchun, Taiwan 2: Animal Genetic and Breeding Division, Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan City, Taiwan 3: Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan Publication date: October 2, 2014 $(document).ready(function() { var shortdescription = $(".originaldescription").text().replace(/\\&/g, '&').replace(/\\, '<').replace(/\\>/g, '>').replace(/\\t/g, ' ').replace(/\\n/g, ''); if (shortdescription.length > 350){ shortdescription = "" + shortdescription.substring(0,250) + "... more"; } $(".descriptionitem").prepend(shortdescription); $(".shortdescription a").click(function() { $(".shortdescription").hide(); $(".originaldescription").slideDown(); return false; }); }); Related content In this: publication By this: publisher By this author: Tu, Po-An ; Lin, Der-Yuh ; Li, Guang-Fu ; Huang, Jan-Chi ; Wang, De-Chi ; Wang, Pei-Hwa GA_googleFillSlot("Horizontal_banner_bottom");
    Animal Biotechnology 01/2014; 25(4).
  • Animal Biotechnology 01/2013; 24(1):31-43.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The availability of molecular markers has been limited in camels. The aim of this study was to develop new simple sequence repeat (SSR) markers. Pooled dromedary genome (four breeds) was sequenced at a low coverage utilizing Roche and Illumina platforms. A total of 65,746 contigs covering around 52 Mb (2,316 contigs >2 kb) were assembled. The partial genome revealed 613 SSR loci with a minimum number of repeat units of five. Comparative chromosomal location for 60 camel loci was predicted against bovine genome assembly Baylor Btau_4.6.1/bosTau7. Ten markers (16.7%) returned matches with a score of >100 and identity of >80%. SSR abundance was one in every 84.3 kb of contigs. The SSR loci mainly comprised of di- (80.8%), tri- (10.8%), tetra- (7.6%) and few pentamer (0.8%) motifs. Among the dimers, (TA)n and (AC)n were the most abundant (58.6%). Thirty SSR loci were experimentally characterized for both dromedary (sixteen animals) and Bactrian camels. Number of alleles ranged from 1 to 3 and average number of fragments scored per animal ranged from 0.81 to 2, while polymorphic information content ranged from 0 to 0.66 with a mean value of 0.38. These SSR markers will be a valuable resource for further genetic studies of camel and related species.
    Turkish Journal of Veterinary and Animal Sciences 01/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Bacteria carrying resistance genes for many antibiotics are moving beyond the clinic into the community, infecting otherwise healthy people with untreatable and frequently fatal infections. This state of affairs makes it increasingly important that we understand the sources of this problem in terms of bacterial biology and ecology and also that we find some new targets for drugs that will help control this growing epidemic. This brief and eclectic review takes the perspective that we have too long thought about the problem in terms of treatment with or resistance to a single antibiotic at a time, assuming that dissemination of the resistance gene was affected by simple vertical inheritance. In reality antibiotic resistance genes are readily transferred horizontally, even to and from distantly related bacteria. The common agents of bacterial gene transfer are described and also one of the processes whereby nonantibiotic chemicals, specifically toxic metals, in the environment can select for and enrich bacteria with antibiotic multiresistance. Lastly, some speculation is offered on broadening our perspective on this problem to include drugs directed at compromising the ability of the mobile elements themselves to replicate, transfer, and recombine, that is, the three "infrastructure" processes central to the movement of genes among bacteria.
    Animal Biotechnology 02/2006; 17(2):125-35.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diets formulated to maximize performance of weanling pigs need to support the development of intestinal tissue, support intestinal colonization with beneficial, mainly lactic acid-producing bacteria, and support development of the intestinal and overall immune system. This objective is not likely to be achieved using one single strategy, but there is strong evidence that diets formulated with cereal grains other than corn, with a low concentration of crude protein and with the use of direct-fed microbials, will improve intestinal health and performance of weanling pigs. Further improvements may be observed if the grain part of the diet is fermented prior to feeding or if the diet is fed in a liquid form, but the need for specialized equipment limit the implementation of this strategy. Dietary supplements such as essential oils and nucleosides or nucleotides may also be useful, but more research is needed to verify the effects of these substances.
    Animal Biotechnology 02/2006; 17(2):217-31.

Related Journals