Advances in food and nutrition research (Adv Food Nutr Res )

Description

  • Impact factor
    0.00
  • 5-year impact
    0.00
  • Cited half-life
    0.00
  • Immediacy index
    0.00
  • Eigenfactor
    0.00
  • Article influence
    0.00
  • Website
    Advances in Food & Nutrition Research website
  • Other titles
    Advances in food and nutrition research
  • ISSN
    1043-4526
  • OCLC
    19499025
  • Document type
    Journal / Magazine / Newspaper

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Polysaccharides are macromolecules made up of many monosaccharides joined together by glycosidic bonds. Polysaccharides from marine sources are widely distributed as the principle component in cell wall structures of seaweeds or exoskeletons of crustaceans. So far, marine polysaccharides have been used in many fields of biomaterials, food, cosmetic, and pharmacology. Especially, numerous pharmaceutical properties of marine polysaccharides have been revealed such as antioxidant, anti-inflammatory, antiallergic, antitumor, antiobesity, antidiabetes, anticoagulant, antiviral, immunomodulatory, cardioprotective, antihepatopathy, antiuropathy, and antirenalpathy activities. Recently, several marine polysaccharides such alginate, porphyran, fucoidan, and chitin and its derivatives have been found as modulators of allergic responses due to enhancing innate immune system, altering Th1/Th2 balance, inhibiting IgE production, and suppressing mast cell degranulation. This contribution, therefore, focuses specially on the immunomodulatory effect of marine polysaccharides and emphasizes their potential application as candidates of pharmaceuticals as well as nutraceuticals to prevent allergic disorders.
    Advances in food and nutrition research 01/2014; 73:1-13.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene therapy involves the introduction of foreign genetic material into cells in order to exert a therapeutic effect. Successful gene therapy relies on effective vector system. Viral vectors are highly efficient in transfecting cells, but the undesirable complications limit their therapeutic applications. As a natural biopolymer, chitosan has been considered to be a good gene carrier candidate due to its ideal character which combines biocompatibility, low toxicity with high cationic density together. However, the low cell specificity and low transfection efficiency of chitosan as a gene carrier need to be overcome before undertaking clinical trials. This chapter is principally on those endeavors such as chemical modifications using cell-specific ligands and stimuli-response groups as well as penetrating modifications that have been done to increase the performances of chitosan in gene therapy.
    Advances in food and nutrition research 01/2014; 73:83-101.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Nowadays, chitin and chitosan are produced from the shells of crabs and shrimps, and bone plate of squid in laboratory to industrial scale. Production of chitosan involved deproteinization, demineralization, and deacetylation. The characteristics of chitin and chitosan mainly depend on production processes and conditions. The characteristics of these biopolymers such as appearance of polymer, turbidity of polymer solution, degree of deacetylation, and molecular weight are of major importance on applications of these polymers. This chapter addresses the production processes and conditions to produce chitin, chitosan, and chito-oligosaccharide and methods for characterization of chitin, chitosan, and chito-oligosaccharide.
    Advances in food and nutrition research 01/2014; 72:1-15.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To gain insight into the structure-activity relationship of alginate, we examined the effect of alginates with varying molecular weights and M/G ratio on murine macrophage cell line, RAW264.7 cells in terms of induction of tumor necrosis factor-α (TNF-α) secretion. Among the alginates tested, alginate with the highest molecular weight (MW 38,000, M/G 2.24) showed the most potent TNF-α-inducing activity. Alginates having higher M/G ratio tended to show higher activity. These results suggest that molecular size and M/G ratio are important structural parameters influencing the TNF-α-inducing activity. Interestingly, enzymatic depolymerization of alginate with bacterial alginate lyase resulted in dramatic increase in the TNF-α-inducing activity. The higher activity of enzymatically digested alginate oligomers to induce nitric oxide production from RAW264.7 cells than alginate polymer was also observed. On the other hand, alginate polymer and oligomer showed nearly equal hydroxyl radical scavenging activities.
    Advances in food and nutrition research 01/2014; 72:95-112.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Extracellular polysaccharides (EPSs) produced by microorganisms are a complex mixture of biopolymers primarily consisting of polysaccharides, as well as proteins, nucleic acids, lipids, and humic substances. Microbial polysaccharides are multifunctional and can be divided into intracellular polysaccharides, structural polysaccharides, and extracellular polysaccharides or exopolysaccharides. Recent advances in biological techniques allow high levels of polysaccharides of interest to be produced in vitro. Biotechnology is a powerful tool to obtain polysaccharides from a variety of marine microorganisms, by controlling the growth conditions in a bioreactor while tailoring the production of biologically active compounds. The aim of this chapter is to give an overview of current knowledge on extracellular polysaccharides producing marine bacteria isolated from marine environment.
    Advances in food and nutrition research 01/2014; 72:79-94.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Type 2 diabetes is characterized by significant losses of important micronutrients due to metabolic basis of the disease and its complications. Evidence of changes in trace mineral and vitamin metabolism as a consequence of type 2 diabetes is reviewed in this chapter. This review is not a meta-analysis but an overview of the micronutrient status, metabolic needs, and potential micronutrient requirements in type 2 diabetics. This chapter will not concentrate on vitamin D and type 2 diabetes as this is a topic that has been extensively reviewed before. The less well-known micronutrients notably zinc, magnesium, chromium, copper, manganese, iron, selenium, vanadium, B-group vitamins, and certain antioxidants are assessed. While some evidence is available to demonstrate the positive influence of micronutrient supplementation on glycemic control, much remains to be investigated. Additional research is necessary to characterize better biomarkers of micronutrient status and requirements in type 2 diabetics. The optimal level of micronutrient supplementation to achieve glucose homeostasis in type 2 diabetics remains a challenge.
    Advances in food and nutrition research 01/2014; 71:55-100.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite considerable progress in medical research, cancer is still one of the high-ranking causes of death in the world. It is the second most common cause of death due to disease after heart disease, and according to World Health Organization it will be the cause of death for more than 10 million people in 2020; therefore, one of the main research goals for researchers investigating new anticancer agents. But the major complication for the cancer cure without surgeries is side effects. Especially, cytotoxic anticancer chemotherapeutic agents generally produce severe side effects, while reducing host resistance to cancer and infections. Therefore, it is important to find new, powerful anticancer agents that are highly effective, biodegradable, and biocompatible. Chitin and chitosan are biopolymers which have unique structural possibilities for chemical and mechanical modifications to generate novel properties, functions. These biopolymers are biocompatible, biodegradable, and nontoxic, and their chemical properties allow them to be easily processed into gels, sponges, membranes, beads, and scaffolds forms also. Due to their unique properties, they are excellent candidates for cancer cure or cancer diagnosis.
    Advances in food and nutrition research 01/2014; 72:215-25.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Carbohydrates (CHOs) are the most abundant organic compounds found in living organisms and are a great source of metabolic energy, both for plants and animals. Besides of CHOs great potential to solve animal's energy requirements and diminishing high feed cost, we first must to understand its digestibility and assimilation to avoid several inconvenients. Today, CHOs feed animal inclusions are of great concern about cost-benefits, animal's health status, and environmental pollution. In this chapter, we make a brief description about sugars (DP1-2), oligosaccharides (DP3-9), polysaccharides (DP ≥10), and their essential characteristics to understand the role of marine and terrestrial CHOs in animal nutrition. Subsequently, we talk about basic concepts, CHOs functional benefits, suggestions about their application and successful cases. This information will contribute to produce a new generation of high-quality and energetic functional feed formulations for livestock and aquaculture farms; which must be of low cost, healthy, and environmentally friendly, with the inclusion of prebiotics and probiotics.
    Advances in food and nutrition research 01/2014; 73:259-88.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The glycosaminoglycan (heparin and heparan sulfate) are polyanionic sulfated polysaccharides mostly recognized for its anticoagulant activity. In many countries, low-molecular-weight heparins have replaced the unfractionated heparin, owing to its high bioavailability, half-life, and less adverse effect. The low-molecular-weight heparins differ in mode of preparation (chemical or enzymatic synthesis and chromatography fractionations) and as a consequence in molecular weight distribution, chemical structure, and pharmacological activities. Bovine and porcine body parts are at present used for manufacturing of commercial heparins, and the appearance of mad cow disease and Creutzfeldt-Jakob disease in humans has limited the use of bovine heparin. Consequently, marine organisms come across the new resource for the production of low-molecular-weight heparin and heparan sulfate. The importance of this chapter suggests that the low-molecular-weight heparin and heparan sulfate from marine species could be alternative sources for commercial heparin.
    Advances in food and nutrition research 01/2014; 72:45-60.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hybrid carrageenan is a special class of carrageenan with niche application in food industry. This polysaccharide is extracted from specific species of seaweeds belonging to the Gigartinales order. This chapter focuses on hybrid carrageenan showing the ability to form gels in water, which is known in the food industry as weak kappa or kappa-2 carrageenan. After introducing the general chemical structure defining hybrid carrageenan, the isolation of the polysaccharide will be discussed focusing on the interplay between seaweed species, extraction parameters, and the hybrid carrageenan chemistry. Then, the rheological experiments used to determine the small and large deformation behavior of gels will be detailed before reviewing the relationships between gel properties and hybrid carrageenan chemistry.
    Advances in food and nutrition research 01/2014; 72:17-43.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Chitin, chitosan, and their derivatives are considered to promote diverse activities, including antioxidant, antihypertensive, anti-inflammatory, anticoagulant, antitumor and anticancer, antimicrobial, hypocholesterolemic, and antidiabetic effects, one of the most crucial of which is the antioxidant effect. By modulating and improving physiological functions, chitin, chitosan, and their derivatives may provide novel therapeutic applications for the prevention or treatment of chronic diseases. Antioxidant activity of chitin, chitosan, and their derivatives can be attributed to in vitro and in vivo free radical-scavenging activities. Antioxidant effect of chitin, chitosan, and their derivatives may be used as functional ingredients in food formulations to promote consumer health and to improve the shelf life of food products. This chapter presents an overview of the antioxidant activity of chitin, chitosan, and their derivatives with the potential utilization in the food and pharmaceutical industries.
    Advances in food and nutrition research 01/2014; 73:15-31.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Current day's research has been focusing much on the potential pharmacological or nutraceutical agents of selective health benefits with less toxicity. As a consequence of increased demand of nutritional supplements of great medicinal values, development of therapeutic agents from natural sources, in particular, marine environment are being considered much important. A diverse array of marine natural products containing medicinally useful nutritional substances, i.e., marine nutraceuticals have been focused to the benefit of mankind. Carbohydrates, by being constituted in considerable amount of many marine organisms display several nutraceutical and pharmaceutical behavior to defend from various diseases. Moreover, the carbohydrates from algae as well as from shellfish wastes, like chitosan and its derivatives, showed tremendous applications in biology and biomedicine. In the current chapter, several of marine carbohydrates from various marine flora and fauna have been covered with their applications and prospects in the development of nutraceuticals and pharmaceuticals.
    Advances in food and nutrition research 01/2014; 73:183-95.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Obesity and diabetes are two important closely related matters to world health with increasing morbidity and mortality rate. Many recent studies promoted chitosan-based substances as lead molecules for treatment and prevention of obesity, diabetes, and related complications due to their easy and potential utilization in the food, pharmaceutical, agricultural, and environmental fields. Although detailed action mechanism and how chitosan-based molecules act as antidiabetics and antiobesity specifically are remain to be enlightened, studies exhibited enough evidence to direct our intention to produce natural therapeutic agents using chitosan and its derivatives as lead substances. In this chapter, some reported antidiabetics and antiobesity applications of chitosan and its derivatives have been briefly summarized in regard to acting pathways and structure-based activity in order to obtain some valuable insights into novel chitosan-based derivatives and their utilization for antidiabetic and antiobesity purposes.
    Advances in food and nutrition research 01/2014; 73:33-44.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Marine carbohydrates are most important organic molecules made by photosynthetic organisms. It is very essential for humankind: the role in being an energy source for the organism and they are considered as an important dissolve organic compound (DOC) in marine environment's sediments. Carbohydrates found in different marine environments in different concentrations. Polysaccharides of carbohydrates play an important role in various fields such as pharmaceutical, food production, cosmeceutical, and so on. Marine organisms are good resources of nutrients, and they are rich carbohydrate in sulfated polysaccharide. Seaweeds (marine microalgae) are used in different pharmaceutical industries, especially in pharmaceutical compound production. Seaweeds have a significant amount of sulfated polysaccharides, which are used in cosmeceutical industry, besides based on the biological applications. Since then, traditional people, cosmetics products, and pharmaceutical applications consider many types of seaweed as an important organism used in food process. Sulfated polysaccharides containing seaweed have potential uses in the blood coagulation system, antiviral activity, antioxidant activity, anticancer activity, immunomodulating activity, antilipidepic activity, etc. Some species of marine organisms are rich in polysaccharides such as sulfated galactans. Various polysaccharides such as agar and alginates, which are extracted from marine organisms, have several applications in food production and cosmeceutical industries. Due to their high health benefits, compound-derived extracts of marine polysaccharides have various applications and traditional people were using them since long time ago. In the future, much attention is supposed to be paid to unraveling the structural, compositional, and sequential properties of marine carbohydrate as well.
    Advances in food and nutrition research 01/2014; 73:197-220.