The Plant Cell (PLANT CELL )

Publisher: American Society of Plant Physiologists; American Society of Plant Biologists, American Society of Plant Biologists

Description

The Plant Cell, which is published monthly (one volume per year) by the American Society of Plant Biologists (ASPB), is in its 13th year of publication. Within three years of its initial publication, The Plant Cell ranked first in impact among journals publishing primary research in the plant sciences. It has continued to maintain this standard of excellence ever since. The Plant Cell was founded on four key tenets: (1) to publish the most exciting, cutting-edge research in plant cellular and molecular biology, (2) to provide the most rapid turn-around time possible for reviewing and publishing a research paper, (3) to feature the highest quality reproduction of data, and (4) to provide, in the front section of the journal, a more interactive format for commentaries, opinion pieces, and the exchange of information and ideas in review articles, meeting reports, and insightful overviews of featured research papers. Moreover, our all-review issues, each of which focuses on a specific area of plant biology, are highly regarded teaching and reference tools. Those highlighting Plant-Microbe Interactions and Plant Vegetative Development are available for purchase by individuals.

  • Impact factor
    9.25
    Show impact factor history
     
    Impact factor
  • 5-year impact
    10.13
  • Cited half-life
    8.00
  • Immediacy index
    1.53
  • Eigenfactor
    0.09
  • Article influence
    3.80
  • Website
    Plant Cell Online, The website
  • Other titles
    Plant cell online., The Plant cell
  • ISSN
    1040-4651
  • OCLC
    18424872
  • Material type
    Periodical, Internet resource
  • Document type
    Journal / Magazine / Newspaper, Internet Resource

Publisher details

American Society of Plant Biologists

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • On authors website and institutional repository
    • State that pre-print is under review/accepted
    • Remove pre-print on publication and replace with toll-free link to publisher version
    • If funding agency rules apply, authors may post articles in PubMed Central after a 12 month embargo
    • Must link to publisher version
    • Publisher's version/PDF must be used, but publisher's toll-free option preferred
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Selective autophagy has been extensively studied in various organisms, but knowledge regarding its functions in plants, particularly in organelle turnover, is limited. We have recently discovered ATG8-INTERACTING PROTEIN1 (ATI1) from Arabidopsis thaliana and showed that following carbon starvation it is localized on endoplasmic reticulum (ER)-associated bodies that are subsequently transported to the vacuole. Here, we show that following carbon starvation ATI1 is also located on bodies associating with plastids, which are distinct from the ER ATI bodies and are detected mainly in senescing cells that exhibit plastid degradation. Additionally, these plastid-localized bodies contain a stroma protein marker as cargo and were observed budding and detaching from plastids. ATI1 interacts with plastid-localized proteins and was further shown to be required for the turnover of one of them, as a representative. ATI1 on the plastid bodies also interacts with ATG8f, which apparently leads to the targeting of the plastid bodies to the vacuole by a process that requires functional autophagy. Finally, we show that ATI1 is involved in Arabidopsis salt stress tolerance. Taken together, our results implicate ATI1 in autophagic plastid-to-vacuole trafficking through its ability to interact with both plastid proteins and ATG8 of the core autophagy machinery.
    The Plant Cell 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Little is known so far about RNA regulators of photosynthesis in plants, algae, or cyanobacteria. The small RNA PsrR1 (formerly SyR1) has been discovered in Synechocystis sp PCC 6803 and appears to be widely conserved within the cyanobacterial phylum. Expression of PsrR1 is induced shortly after a shift from moderate to high-light conditions. Artificial overexpression of PsrR1 led to a bleaching phenotype under moderate light growth conditions. Advanced computational target prediction suggested that several photosynthesis-related mRNAs could be controlled by PsrR1, a finding supported by the results of transcriptome profiling experiments upon pulsed overexpression of this small RNA in Synechocystis sp PCC 6803. We confirmed the interaction between PsrR1 and the ribosome binding regions of the psaL, psaJ, chlN, and cpcA mRNAs by mutational analysis in a heterologous reporter system. Focusing on psaL as a specific target, we show that the psaL mRNA is processed by RNase E only in the presence of PsrR1. Furthermore, we provide evidence for a posttranscriptional regulation of psaL by PsrR1 in the wild type at various environmental conditions and analyzed the consequences of PsrR1-based regulation on photosystem I. In summary, computational and experimental data consistently establish the small RNA PsrR1 as a regulatory factor controlling photosynthetic functions.
    The Plant Cell 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Arabidopsis thaliana KORRIGAN1 (KOR1) is an integral membrane endo-β1,4-glucanase in the trans-Golgi network and plasma membrane that is essential for cellulose biosynthesis. The extracellular domain of KOR1 contains eight N-glycosylation sites, N1 to N8, of which only N3 to N7 are highly conserved. Genetic evidence indicated that cellular defects in attachment and maturation of these N-glycans affect KOR1 function in vivo, whereas the manner by which N-glycans modulate KOR1 function remained obscure. Site-directed mutagenesis analysis of green fluorescent protein (GFP)-KOR1 expressed from its native regulatory sequences established that all eight N-glycosylation sites (N1 to N8) are used in the wild type, whereas stt3a-2 cells could only inefficiently add N-glycans to less conserved sites. GFP-KOR1 variants with a single N-glycan at nonconserved sites were less effective than those with one at a highly conserved site in rescuing the root growth phenotype of rsw2-1 (kor1 allele). When functionally compromised, GFP-KOR1 tended to accumulate at the tonoplast. GFP-KOR1Δall (without any N-glycan) exhibited partial complementation of rsw2-1; however, root growth of this line was still negatively affected by the absence of complex-type N-glycan modifications in the host plants. These results suggest that one or several additional factor(s) carrying complex N-glycans cooperate(s) with KOR1 in trans to grant proper targeting/functioning in plant cells.
    The Plant Cell 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Plasma membrane-localized pattern recognition receptors such as FLAGELLIN SENSING2 (FLS2) and EF-TU RECEPTOR (EFR) recognize microbe-associated molecular patterns (MAMPs) to activate the first layer of plant immunity termed pattern-triggered immunity (PTI). A reverse genetics approach with genes responsive to the priming agent β-aminobutyric acid (BABA) revealed IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) as a critical PTI player. Arabidopsis thaliana ios1 mutants were hypersusceptible to Pseudomonas syringae bacteria. Accordingly, ios1 mutants demonstrated defective PTI responses, notably delayed upregulation of PTI marker genes, lower callose deposition, and mitogen-activated protein kinase activities upon bacterial infection or MAMP treatment. Moreover, Arabidopsis lines overexpressing IOS1 were more resistant to P. syringae and demonstrated a primed PTI response. In vitro pull-down, bimolecular fluorescence complementation, coimmunoprecipitation, and mass spectrometry analyses supported the existence of complexes between the membrane-localized IOS1 and FLS2 and EFR. IOS1 also associated with BRASSINOSTEROID INSENSITIVE1-ASSOCIATED KINASE1 (BAK1) in a ligand-independent manner and positively regulated FLS2/BAK1 complex formation upon MAMP treatment. Finally, ios1 mutants were defective in BABA-induced resistance and priming. This work reveals IOS1 as a regulatory protein of FLS2- and EFR-mediated signaling that primes PTI activation upon bacterial elicitation.
    The Plant Cell 07/2014;