Human Molecular Genetics (HUM MOL GENET )

Publisher: Oxford University Press

Description

Human Molecular Genetics concentrates on full-length research papers covering a wide range of topics in all aspects of human molecular genetics. These include: the molecular basis of human genetic disease developmental genetics neurogenetics chromosome structure and function molecular aspects of cancer genetics gene therapy biochemical genetics major advances in gene mapping understanding of genome organisation In addition the journal also publishes research on other model systems for the analysis of genes especially when there is an obvious relevance to human genetics. Key features of the journal include: Articles - comprehensive reports and definitive research findings of interest to a broad audience of human molecular geneticists. We encourage inclusion of full experimental details with as many display items (figures and tables) as required to tell the complete story. Reports - descriptions of novel results of biological and genetic importance in the field. Commentaries - these discuss recent papers in the journal or review areas of particular interest in the field. Now in its eighth year of publication Human Molecular Genetics has clearly become one of the leading journals in this exciting frontier of scientific research. With the enthusiastic support of the executive editors and editorial board we intend to ensure that the journal's reputation for quality is reinforced in the years to come.

  • Impact factor
    7.69
    Show impact factor history
     
    Impact factor
  • 5-year impact
    7.54
  • Cited half-life
    6.60
  • Immediacy index
    1.55
  • Eigenfactor
    0.11
  • Article influence
    3.08
  • Website
    Human Molecular Genetics website
  • Other titles
    Human molecular genetics
  • ISSN
    0964-6906
  • OCLC
    25594670
  • Material type
    Periodical, Internet resource
  • Document type
    Journal / Magazine / Newspaper, Internet Resource

Publisher details

Oxford University Press

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo on science, technology, medicine articles
    • 2 years embargo on arts and humanities articles
    • Some titles may have different embargoes
  • Conditions
    • Pre-print can only be posted prior to acceptance
    • Pre-print must be accompanied by set statement (see link)
    • Pre-print must not be replaced with post-print, instead a link to published version with amended set statement should be made
    • Pre-print on author's personal website, employer website, free public server or pre-prints in subject area
    • Post-print in Institutional repositories or Central repositories
    • Publisher version cannot be used except for Nucleic Acids Research articles
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany archived copy (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
    • Eligible UK authors may deposit in OpenDepot
    • Publisher will deposit on behalf of NIH funded authors to PubMed Central, Nucleic Acids Research authors must pay their fee first
    • Some titles may use different policies
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Normal glucose homeostasis is characterized by appropriate insulin secretion and low HbA1c. Gene expression signatures associated with these two phenotypes could be essential for islet function and patho-physiology of type 2 diabetes (T2D). Herein, we employed a novel approach to identify candidate genes involved in T2D by correlating islet microarray gene expression data (78 donors) with insulin secretion and HbA1c level. Expression of 649 genes (p<0.05) was correlated with insulin secretion and HbA1c. Of them, 5 genes (GLR1A, PPP1R1A, PLCDXD3, FAM105A and ENO2) correlated positively with insulin secretion/negatively with HbA1c and one gene (GNG5) correlated negatively with insulin secretion/positively with HbA1c were followed up. The 5 positively correlated genes have lower expression levels in diabetic islets, whereas, GNG5 expression is higher. Exposure of human islets to high glucose for 24 hrs resulted in up-regulation of GNG5 and PPP1R1A expression, while expression of ENO2 and GLRA1 was down-regulated. No effect was seen on the expression of FAM105A and PLCXD3. siRNA silencing in INS-1 832/13 cells showed reduction in insulin secretion for PPP1R1A, PLXCD3, ENO2, FAM105A and GNG5 but not GLRA1. Although, no SNP in these gene loci passed the genome-wide significance for association with T2D in DIAGRAM+ database, four SNPs influenced gene expression in cis in human islets. In conclusion, we identified and confirmed PPP1R1A, FAM105A, ENO2, PLCDX3 and GNG5 as potential regulators of islet function. We provide a list of candidate genes as a resource for exploring their role in the pathogenesis of T2D. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Predicting the impact of genetic variation on human health remains an important and difficult challenge. Often, algorithmic classifiers are tasked with predicting binary traits (e.g., positive or negative for a disease) from missense variation. Though useful, this arrangement is limiting and contrived, because human diseases often comprise a spectrum of severities, rather than a discrete partitioning of patient populations. Furthermore, labeling variants as causal or benign can be error prone, which is problematic for training supervised learning algorithms (the so-called "garbage in, garbage out" phenomenon). We explore the potential value of training classifiers using continuous-valued quantitative measurements, rather than binary traits. Using 20 variants from CFTR nucleotide-binding domains and six quantitative measures of cystic fibrosis (CF) severity, we trained classifiers to predict CF severity from CFTR variants. Employing cross validation, classifier prediction and measured clinical/functional values were significantly correlated for four of six quantitative traits (correlation P-values from 1.35 X 10(-4) to 1.35 X 10(-4)). Classifiers were also able to stratify variants by three clinically relevant risk categories with 85% to 100% accuracy, depending on which of the six quantitative traits was used for training. Lastly, we characterized 11 additional CFTR variants using clinical sweat chloride testing, two functional assays, or all three diagnostics, and validated our classifier using blind prediction. Predictions were within the measured sweat chloride range for seven of eight variants, and captured the differential impact of specific variants on the two functional assays. This work demonstrates a promising and novel framework for assessing the impact of genetic variation. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate epigenetic contributions to Huntington's disease (HD) pathogenesis, we carried out genome-wide mapping of the transcriptional mark, trimethyl-histone H3-lysine 4 (H3K4me3) in neuronal nuclei extracted from prefrontal cortex of HD cases and controls using chromatin immunoprecipitation followed by deep-sequencing. Neuron-specific mapping of the genome-wide distribution of H3K4me3 revealed 136 differentially enriched loci associated with genes implicated in neuronal development and neurodegeneration, including GPR3, TMEM106B, PDIA6 and the Notch signaling genes hairy and enhancer of split 4 (HES4) and JAGGED2, supporting the view that the neuronal epigenome is affected in HD. Importantly, loss of H3K4me3 at CpG-rich sequences on the HES4 promoter was associated with excessive DNA methylation, reduced binding of nuclear proteins to the methylated region and altered expression of HES4 and HES4 targeted genes MASH1 and P21 involved in striatal development. Moreover, hypermethylation of HES4 promoter sequences was strikingly correlated with measures of striatal degeneration and age-of-onset in a cohort of 25 HD brains (r = 0.56, P = 0.006). Lastly, shRNA knockdown of HES4 in human neuroblastoma cells altered MASH1 and P21 mRNA expression and markedly increased mutated HTT-induced aggregates and cell death. These findings, taken together, suggest that epigenetic dysregulation of HES4 could play a critical role in modifying HD disease pathogenesis and severity. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: ATRX is a chromatin remodeling protein involved in deposition of the histone variant H3.3 at telomeres and pericentromeric heterochromatin. It also influences the expression level of specific genes; however, deposition of H3.3 at transcribed genes is currently thought to occur independently of ATRX. We focused on a set of genes, including the autism susceptibility gene Neuroligin 4 (Nlgn4), that exhibit decreased expression in ATRX-null cells to investigate the mechanisms used by ATRX to promote gene transcription. DNA methylation, histone modifications and TERRA levels are not altered at ATRX target genes and thus cannot explain transcriptional dysregulation. We found that ATRX does not associate with the promoter of these genes, but rather binds within regions of the gene body corresponding to high H3.3 occupancy. These intragenic regions consist of guanine-rich DNA sequences predicted to form non-B DNA structures called G-quadruplexes during transcriptional elongation. We demonstrate that ATRX deficiency corresponds to reduced H3.3 incorporation and stalling of RNA polymerase II at these G-rich intragenic sites. These findings suggest that ATRX promotes the incorporation of histone H3.3 at particular transcribed genes and facilitates transcriptional elongation through G-rich sequences. The inability to transcribe genes such as Nlgn4 could cause deficits in neuronal connectivity and cognition associated with ATRX mutations in humans. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Otitis media (OM), the inflammation of the middle ear, is the most common disease and cause for surgery in infants worldwide. Chronic Otitis media with effusion (OME) often leads to conductive hearing loss, and is a common feature in a number of craniofacial syndromes, such as 22q11.2 Deletion Syndrome (22q11.2DS). OM is more common in children because the more horizontal position of the Eustachian tube (ET) in infants limits or delays clearance of middle ear effusions. Some mouse models with OM have shown alterations in the morphology and angle of the ET. Here we present a novel mechanism in which OM is caused not by a defect in the ET itself but in the muscles that control its function. Our results show that in two mouse models of 22q11.2DS (Df1/+ and Tbx1(+/-)) presenting with bi- or unilateral OME, the 4(th) pharyngeal arch-derived levator veli palatini muscles were hypoplastic, which was associated with an earlier altered pattern of MyoD expression. Importantly, in mice with unilateral OME, the side with the inflammation was associated with significantly smaller muscles than the contralateral unaffected ear. Functional tests examining ET patency confirmed a reduced clearing ability in the heterozygous mice. Our findings are also of clinical relevance as targeting hypoplastic muscles might present a novel preventative measure for reducing the high rates of OM in 22q11.2DS patients. © The Author 2014. Published by Oxford University Press.
    Human Molecular Genetics 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Selenoprotein N (SEPN1), is a broadly expressed resident protein of the endoplasmic reticulum (ER) whose loss-of-function inexplicably leads to human muscle disease. We found that SEPN1 levels parallel those of endoplamic reticulum oxidoreductin 1 (ERO1), an ER protein thiol oxidase, and that SEPN1's redox activity defends the ER from ERO1-generated peroxides. Moreover, we have defined the redox-regulated interactome of SEPN1 and identified the ER calcium import SERCA2 pump as a redox-partner of SEPN1. SEPN1 enhances SERCA2 activity by reducing luminal cysteines that are hyperoxidised by ERO1-generated peroxides. Cells lacking SEPN1 are hypersensitive to ERO1 overexpression and conspicuously defective in ER calcium re-uptake. After being muscle-transduced with an adeno-associated virus driving ERO1α SEPN1 knockout mice unmasks a myopathy that resembles the dense core disease due to human mutations in SEPN1, whereas the combined attenuation of ERO1α and SEPN1 enhances cell fitness. These observations reveal the involvement of SEPN1 in ER redox and calcium homeostasis and that an ERO1 inhibitor, restoring redox-dependent calcium homeostasis, may ameliorate the myopathy of SEPN1 deficiency. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Amyotrophic Lateral Sclerosis (ALS) is a progressive neuromuscular disease for which there is no cure. We have previously developed a Drosophila model of ALS based on TDP-43 that recapitulates several aspects of disease pathophysiology. Using this model, we designed a drug screening strategy based on the pupal lethality phenotype induced by TDP-43 when expressed in motor neurons. In screening 1,200 FDA approved compounds, we identified the PPARγ agonist pioglitazone as neuroprotective in Drosophila. Here we show that pioglitazone can rescue TDP-43 dependent locomotor dysfunction in motor neurons and glia but not in muscles. Testing additional models of ALS we find that pioglitazone is also neuroprotective when FUS, but not SOD1, is expressed in motor neurons. Interestingly, survival analyses of TDP or FUS models show no increase in lifespan, which is consistent with recent clinical trials. Using a pharmacogenetic approach, we show that the predicted Drosophila PPARγ homologs, E75 and E78 are in vivo targets of pioglitazone. Finally, using a global metabolomic approach, we identify a set of metabolites that pioglitazone can restore in the context of TDP-43 expression in motor neurons. Taken together, our data provide evidence that modulating PPARγ activity, although not effective at improving lifespan, provides a molecular target for mitigating locomotor dysfunction in TDP-43 and FUS but not SOD1 models of ALS in Drosophila. Furthermore, our data also identifies several “biomarkers” of the disease that may be useful in developing therapeutics and in future clinical trials.
    Human Molecular Genetics 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fibroblast Growth Factor Receptor 3 (FGFR3) plays a critical role in the control of endochondral ossification and bone growth and mutations that cause hyperactivation of FGFR3 are responsible for a collection of developmental disorders that feature poor endochondral bone growth. FGFR3 is expressed in proliferating chondrocytes of the cartilaginous growth plate but also in chondrocytes that have exited the cell cycle and entered the prehypertrophic phase of chondrocyte differentiation. Achondroplasia disorders feature defects in chondrocyte proliferation and differentiation and the defects in differentiation have generally been considered to be a secondary manifestation of altered proliferation. By initiating a mutant activated knockin allele of FGFR3 (FGFR3K650E) that causes Thanatophoric Dysplasia Type II (TDII) specifically in prehypertrophic chondrocytes, we show that mutant FGFR3 induces a differentiation block at this stage independent of any changes in proliferation. The differentiation block coincided with persistent expression of SOX9, the master regulator of chondrogenesis, and reducing SOX9 dosage allowed chondrocyte differentiation to proceed and significantly improved endochondral bone growth in TDII. These findings suggest that a proliferation-independent and SOX9-dependent differentiation block is a key driving mechanism responsible for poor endochondral bone growth in achondroplasia disorders caused by mutations in FGFR3. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human height is associated with risk of multiple diseases and is profoundly determined by an individual's genetic makeup and shows a high degree of ethnic heterogeneity. Large-scale genome-wide association (GWA) analyses of adult height in Europeans have identified nearly 180 genetic loci. A recent study showed high replicability of results from Europeans-based GWA studies in Asians; however, population-specific loci may exist due to distinct linkage disequilibrium patterns. We carried out a GWA meta-analysis in 93,926 individuals from East Asia. We identified 98 loci, including 17 novel and 81 previously reported loci, associated with height at P<5¡Á10(-8), together explaining 8.89% of phenotypic variance. Among the newly identified variants, ten are commonly distributed (MAF>5%) in Europeans, with comparable frequencies with in Asians; and seven SNPs are with low frequency (MAF<5%) in Europeans. In addition, our data suggest that novel biological pathway, such as the protein tyrosine phosphatase (PTP) family is involved in regulation of height. The findings from this study considerably expand our knowledge of the genetic architecture of human height in Asians. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Copy number variants (CNVs) have been proposed as a possible source of 'missing heritability' in complex human diseases. Two studies of type 1 diabetes (T1D) found null associations with common copy number polymorphisms, but CNVs of low frequency and high penetrance could still play a role. We used the Log-R-Ratio intensity data from a dense single nucleotide polymorphism (SNP) array, ImmunoChip, to detect rare CNV deletions (rDELs) and duplications (rDUPs) in 6,808 T1D cases, 9,954 controls, and 2,206 families with T1D-affected offspring. Initial analyses detected CNV associations. However, these were shown to be false positive findings, failing replication with PCR. We developed a pipeline of quality control (QC) tests that were calibrated using systematic testing of sensitivity and specificity. The case-control odds ratios (OR) of CNV burden on T1D risk resulting from this QC pipeline converged on unity, suggesting no global frequency difference in rDELs or rDUPs. There was evidence that deletions could impact T1D risk for a small minority of cases, with enrichment for rDELs longer than 400 kb (OR=1.57, p=0.005). There were also 18 de novo rDELs detected in affected offspring but none for unaffected siblings (p=0.03). No specific CNV regions showed robust evidence for association with T1D, although frequencies were lower than expected (most less than 0.1%), substantially reducing statistical power, which was examined in detail. We present an R-package, plumbCNV, which provides an automated approach for quality control (QC) and detection of rare CNVs that can facilitate equivalent analyses of large-scale SNP array datasets. © The Author 2014. Published by Oxford University Press.
    Human Molecular Genetics 11/2014;
  • Human Molecular Genetics 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vacuolar protein sorting 35 (VPS35) is a core component of the retromer complex, crucial to endosomal protein sorting and intracellular trafficking. We recently linked a mutation in VPS35 (p.D620N) to familial parkinsonism. Here we characterize human VPS35 and retromer function in mature murine neuronal cultures and investigate neuron-specific consequences of the p.D620N mutation. We find VPS35 localizes to dendritic spines and is involved in the trafficking of excitatory AMPA-type glutamate receptors (AMPARs). Fundamental neuronal processes, including excitatory synaptic transmission, AMPAR surface expression and synaptic recycling are altered by VPS35 over-expression. VPS35 p.D620N acts as a loss-of-function mutation with respect to VPS35 activity regulating synaptic transmission and AMPAR recycling in mouse cortical neurons and dopamine neuron-like cells produced from induced pluripotent stem cells of human p.D620N carriers. Such perturbations to synaptic function likely produce chronic pathophysiological stress upon neuronal circuits that may contribute to neurodegeneration in this, and other, forms of parkinsonism. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in RPE65 or lecithin-retinol acyltransferase (LRAT) disrupt 11-cis-retinal synthesis and cause Leber congenital amaurosis (LCA), a severe hereditary blindness occurring in early childhood. The pathology is attributed to a combination of 11-cis-retinal deficiency and photoreceptor degeneration. The mistrafficking of cone membrane-associated proteins including cone opsins (M-and S-opsins), cone transducin (Gαt2), G-protein-coupled receptor kinase 1 (GRK1), and guanylate cyclase 1 (GC1) is suggested to play a role in cone degeneration. However, their precise role in cone degeneration is unclear. Here we investigated the role of S-opsin (Opn1sw) in cone degeneration in Lrat(-/-), a murine model for LCA, by genetic ablation of S-opsin. We show that deletion of just one allele of S-opsin from Lrat(-/-) mice is sufficient to prevent the rapid cone degeneration for at least one month. Deletion of both alleles of S-opsin prevents cone degeneration for an extended period (at least 12 months). This genetic prevention is accompanied by a reduction of endoplasmic reticulum (ER) stress in Lrat(-/-) photoreceptors. Despite cone survival in Opn1sw(-/-)Lrat(-/-) mice, cone membrane-associated proteins (e.g. Gαt2, GRK1, and GC1) continue to have trafficking problems. Our results suggest that cone opsins are the "culprit" linking 11-cis-retinal deficiency to cone degeneration in LCA. This result has important implications for the current gene therapy strategy that emphasizes the need for a combinatorial therapy to both improve vision and slow photoreceptor degeneration. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fragile X syndrome, a common cause of intellectual disability and autism, is due to mutational silencing of the FMR1 gene leading to the absence of its gene product, FMRP. FMRP is a selective RNA-binding protein owing to two central KH domains and a C-terminal RGG box. However, several properties of the FMRP amino terminus are unresolved. It has been documented for over a decade that the amino terminus has the ability to bind RNA despite having no recognizable functional motifs. Moreover, the amino terminus has recently been shown to bind chromatin and influence the DNA damage response as well as function in the presynaptic space, modulating action potential duration. We report here the amino terminal crystal structures of wild-type FMRP, and a mutant (R138Q) that disrupts the amino terminus function, containing an integral tandem Agenet and discover a novel KH motif. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Fever predicts clinical outcomes in sepsis, trauma and during cardiovascular stress, yet the genetic determinants are poorly understood. We used an integrative genomics approach to identify novel genomic determinants of the febrile response to experimental endotoxemia. We highlight multiple integrated lines of evidence establishing the clinical relevance of this novel fever locus. Through GWAS of evoked endotoxemia (LPS 1 ng/kg IV) in healthy subjects of European ancestry we discovered a locus on chr7p11.2 significantly associated with the peak febrile response to LPS (top SNP rs7805622, P=2.4x10(-12)), as well as with temperature fluctuation over time. We replicated this association in a smaller independent LPS study (rs7805622, P=0.03). In clinical translation, this locus was also associated with temperature and mortality in critically ill patients with trauma or severe sepsis. The top GWAS SNPs are not located within protein-coding genes, but have significant cis-eQTL associations with expression of a cluster of genes ∼400Kb upstream, several of which (SUMF2, CCT6A, GBAS) are regulated by LPS in vivo in blood cells and adipose. LPS- and cold-treatment of adipose stromal cells in vitro suggest genotype-specific modulation of eQTL candidate genes (PSPH). Several eQTL genes were up-regulated in brown and white adipose following cold exposure in mice, highlighting a potential role in thermogenesis. Thus, through genomic interrogation of experimental endotoxemia, we identified and replicated a novel fever locus on chr7p11.2 that modulates clinical responses in trauma and sepsis, and highlight integrated in vivo and in vitro evidence for possible novel cis candidate genes conserved across human and mouse. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in SQSTM1, encoding for the protein SQSTM1/p62, have been recently reported in 1-3.5% of patients with amyotrophic lateral sclerosis and frontotemporal lobar degeneration (ALS/FTLD). Inclusions positive for SQSTM1/p62 have been detected in patients with neurodegenerative disorders, including ALS/FTLD. In order to investigate the pathogenic mechanisms induced by SQSTM1 mutations in ALS/FTLD, we developed a zebrafish model. Knock-down of the sqstm1 zebrafish ortholog, as well as impairing of its splicing, led to a specific phenotype, consisting of behavioral and axonal anomalies. Here, we report swimming deficits associated with shorter motor neuronal axons that could be rescued by the overexpression of wild type human SQSTM1. Interestingly, no rescue of the loss-of-function phenotype was observed when overexpressing human SQSTM1 constructs carrying ALS/FTLD-related mutations. Consistent with its role in autophagy regulation, we found increased mTOR levels upon knock-down of sqstm1. Furthermore, treatment of zebrafish embryos with rapamycin, a known inhibitor of the mTOR pathway, yielded an amelioration of the locomotor phenotype in the sqstm1 knock-down model. Our results suggest that loss-of-function of SQSTM1 causes phenotypic features characterized by locomotor deficits and motor neuron axonal defects that are associated with a misregulation of autophagic processes. © The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
    Human Molecular Genetics 11/2014;