World Journal of Microbiology and Biotechnology Impact Factor & Information

Publisher: Springer Verlag

Journal description

World Journal of Microbiology & Biotechnology publishes independently refereed research papers short communications technical communications and review articles on all aspects of applied microbiology and biotechnology including virology. The Journal seeks to provide a forum for research work directed towards microbiological and biotechnological solutions to global problems such as agriculture and food supplies and environmental issues including pollution waste management metal recovery bioleaching biological control agents etc. However it is recognized that many global issues for example improving crop productivity and public health have more acute consequences in the developing world than elsewhere. The Journal therefore aims to emphasize the role of biotechnological advances for and from the developing world whilst encouraging contributions from all scientists who have an interest in tackling these global problems. The editors also encourage contributions on aspects of education in microbiology and biotechnology and invite papers or reviews commenting on the social issues attendant with biotechnological applications. The Journal also publishes from time to time special review issues in which a topic of current interest is reviewed in depth by a group of invited scientists usually under the special editionship of a key leader in the area.

Current impact factor: 1.78

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 1.779
2013 Impact Factor 1.353
2012 Impact Factor 1.262
2011 Impact Factor 1.532
2010 Impact Factor 1.214
2009 Impact Factor 1.082
2008 Impact Factor 0.945
2006 Impact Factor 0.471
2005 Impact Factor 0.634
2004 Impact Factor 0.478
2003 Impact Factor 0.516
2002 Impact Factor 0.498
2001 Impact Factor 0.445
2000 Impact Factor 0.538
1999 Impact Factor 0.57
1998 Impact Factor 0.598
1997 Impact Factor 0.746
1996 Impact Factor 0.608
1995 Impact Factor 0.483
1994 Impact Factor 0.382
1993 Impact Factor 0.226
1992 Impact Factor 0.385

Impact factor over time

Impact factor

Additional details

5-year impact 1.69
Cited half-life 6.50
Immediacy index 0.24
Eigenfactor 0.01
Article influence 0.39
Website World Journal of Microbiology and Biotechnology website
Other titles World journal of microbiology & biotechnology (Online), World journal of microbiology and biotechnology
ISSN 0959-3993
OCLC 37775874
Material type Document, Periodical, Internet resource
Document type Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • World Journal of Microbiology and Biotechnology 10/2015; DOI:10.1007/s11274-015-1945-8
  • [Show abstract] [Hide abstract]
    ABSTRACT: Drug-resistant pathogens and persistent agrochemicals mount the detrimental threats against human health and welfare. Exploitation of beneficial microorganisms and their metabolic inventions is most promising way to tackle these two problems. Since the successive discoveries of penicillin and streptomycin in 1940s, numerous biologically active metabolites have been discovered from different microorganisms, especially actinomycetes. In recent years, actinomycetes that inhabit unexplored environments have received significant attention due to their broad diversity and distinctive metabolic potential with medical, agricultural and industrial importance. In this scenario, endophytic actinomycetes that inhabit living tissues of plants are emerging as a potential source of novel bioactive compounds for the discovery of drug leads. Also, endophytic actinomycetes are considered as bio-inoculants to improve crop performance through organic farming practices. Further efforts on exploring the endophytic actinomycetes associated with the plants warrant the likelihood of discovering new taxa and their metabolites with novel chemical structures and biotechnological importance. This mini-review highlights the recent achievements in isolation of endophytic actinomycetes and an assortment of bioactive compounds.
    World Journal of Microbiology and Biotechnology 09/2015; DOI:10.1007/s11274-015-1950-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: The purpose of this work was to evaluate the antileishmanial activity of endophytic fungi isolated from leaves of Vernonia polyanthes plant and their prospective use in the discovery of bioactive compounds. Sixteen endophytes were isolated by using potato dextrose agar medium and submitted to cultivation in rice medium. The fungal cultures were extracted with ethanol and used as crude extracts for testing their antileishmanial activity. The most active ethanol extract was obtained from P2-F3 strain, which was identified as Cochliobolus sativus by ITS rRNA gene sequence data. Followed by a bioassay-guided fractionation, the cochlioquinone A, isocochlioquinone A and anhydrocochlioquinone A compounds were isolated from the crude extracts and demonstrated to inhibit the parasites. From the present work, it is possible to conclude that endophytic fungi derived from medicinal plant V. polyanthes may be considered promising source for the discovery of bioactive compounds.
    World Journal of Microbiology and Biotechnology 08/2015; DOI:10.1007/s11274-015-1932-0
  • [Show abstract] [Hide abstract]
    ABSTRACT: To investigate the temporal variation of the sediment prokaryote communities and their relation with the rapid increase of algae population in Taihu, a shallow eutrophic freshwater Lake, water and surface sediments were sampled from seven sites in different stages of algal bloom. The physicochemical characterization revealed positive correlations among the nutrient (N, P) parameters in the water and sediments, as well as TN/TP ratio 30.79 in average in water and 0.13 in sediments, demonstrating that P content was the limit factor for bloom in Taihu and sediment was an important nutrient resource for the water body. T-RFLP analysis of 16S rRNA genes revealed a diversity decrease of sediment prokaryotic communities along the bloom. The bacterial communities in sediments were more sensitive and shaped by the temporal changes, while archaea were more sensitive to the trophic level. The pyrosequencing data showed clear spatial and temporal changes in diversity of sediment bacteria. Betaproteobacteria was the most abundant group in all the samples, following by Delta-, Gama- and Alpha-proteobacteria, Acidobacteria, Chlorobi, Chloroflexi etc. At the genus level, Thiobacillus and Sulfuricurvum were the most dominant groups in the sediments, and the increase of Thiobacillus abundance in February might be used as bioindicator for the subsequent bloom. In addition, NO3 (-)-N was evidenced to be the main factor to regulate the bacterial community structure in the sediments. These results offered some novel and important data for the evaluation and predict the algal bloom in Taihu and can be reference for other shallow fresh water lakes.
    World Journal of Microbiology and Biotechnology 03/2015; 31(6). DOI:10.1007/s11274-015-1842-1
  • [Show abstract] [Hide abstract]
    ABSTRACT: The water potential of rhizospheric soil is a key parameter that determines the availability of water, oxygen, and nutrients to plants and microbes. Recent global warming trends and erratic precipitation patterns have resulted in the emergence of drought as a major constraint of agricultural productivity. Though several strategies are being evaluated to address this issue, a novel approach is the utilization of microbes for alleviation of drought stress effects in crops. Citricoccus zhacaiensis B-4 is an osmotolerant actinobacterium isolated from banana rhizosphere on mannitol supplemented medium (-2.92 MPa osmotic potential). This isolate expressed plant growth promotion traits viz, IAA, GA3 production, phosphate, zinc solubilization, ACC deaminase activity and ammonia production under PEG induced osmotic stress and non-stress conditions. Under in vitro osmotic conditions, biopriming with the actinobacterium improved the percent germination, seedling vigour and germination rate of onion seeds (cv. Arka Kalyan) at osmotic potentials up to -0.8 MPa. Considering its novelty, osmotolerance and plant growth promoting traits, biopriming with C. zhacaiensis is suggested as a viable option for the promotion of onion seed germination under drought stressed environments.
    World Journal of Microbiology and Biotechnology 03/2015; 31(5). DOI:10.1007/s11274-015-1837-y
  • [Show abstract] [Hide abstract]
    ABSTRACT: Trichoderma species are widely used as production hosts for industrial enzymes. Identification of Trichoderma species requires a complex molecular biology based identification involving amplification and sequencing of multiple genes. Industrial laboratories are required to run identification tests repeatedly in cell banking procedures and also to prove absence of production host in the product. Such demands can be fulfilled by a brief method which enables confirmation of strain identity. This communication describes one step identification method for two common Trichoderma species; T. citrinoviride and T. reesei, based on identification of polymorphic region in the nucleotide sequence of translation elongation factor 1 alpha. A unique forward primer and common reverse primer resulted in 153 and 139 bp amplicon for T. citrinoviride and T. reesei, respectively. Simplification was further introduced by using mycelium as template for PCR amplification. Method described in this communication allows rapid, one step identification of two Trichoderma species.
    World Journal of Microbiology and Biotechnology 03/2015; 31(6). DOI:10.1007/s11274-015-1839-9
  • [Show abstract] [Hide abstract]
    ABSTRACT: A new strain of Bacillus coagulans CGMCC 9551, which has a broad range of antibacterial activities against six main pathogenic bacteria including Escherichia coli O8, Staphylococcus aureus, Salmonella enterica subsp. enterica serovar enteritidis, Streptococcus suis, Listeria monocytogenes and Pasteurella multocida, was isolated from healthy piglet feces. In adhesion assay, the isolate exhibited a stronger adhesion to pig intestinal mucus than that of B. subtilis JT143 and L. acidophilus LY24 respectively isolated from BioPlus(®)2B and FloraFIT(®) Probiotics (P < 0.05). The adhesion activity reached 44.5 ± 3.2, 48.9 ± 2.6, 42.6 ± 3.3 and 37.6 ± 2.4 % to jejunum, ileum, transverse colon and sigmoid colon, separately. The survival rate of B. coagulans CGMCC 9551 was reduced by only 20 % at 4 h exposure under 0.9 % w/v bile salt. The strain was fully resistant to pH 2 for 2 h with 90.1 ± 3.5 % survival and susceptible to 15 antibiotics commonly used in veterinary medicine. Additionally, the bacteria showed amylase, protease and cellulase activities. The safety assessment demonstrated the lack of toxicity potential in B. coagulans CGMCC 9551 by ligated rabbit ileal loop assay, acute and subchronic toxicity test. These results implied that that the new strain of B. coagulans CGMCC 9951 isolated from healthy piglet feces has promising probiotic characteristics and offers desirable opportunities for its successful commercialization as one excellent candidate probiotic.
    World Journal of Microbiology and Biotechnology 03/2015; 31(6). DOI:10.1007/s11274-015-1838-x
  • [Show abstract] [Hide abstract]
    ABSTRACT: The richness, phylogeny and composition of archaeal community associated with the roots of common reed (Phragmites australis) growing in the Beijing Cuihu Wetland, China was investigated using a 16S rDNA library. In total, 235 individual sequences were collected, and a phylogenetic analysis revealed that 69.4 and 11.5 % of clones were affiliated with the Euryarchaeota and the Crenarchaeota, respectively. In Euryarchaeota, the archaeal community was dominated by species in following genera: Methanobacterium in the order Methanobacteriales (60.7 %); Methanoregula and Methanospirillum in the order Methanomicrobiales (20.2 %), and Methanomethylovorans, Methanosarcina and Methanosaeta in the order Methanosarcinales (17.2 %). Of 27 sequences assigned to uncultured Crenarchaeota, 22 were grouped into Group 1.3, and five grouped into Group 1.1b. Hence, the archaeal communities associated with reed roots are largely involved in methane production, and, to a lesser extent, in ammonia oxidization. Quantification of the archaeal amoA gene indicated that ammonia oxidizing archaea were more numerous in the rhizosphere soil than in the root tissue or surrounding water. A total of 19.1 % of the sequences were unclassified, suggesting that many unidentified archaea are probably involved in the reed wetland ecosystem.
    World Journal of Microbiology and Biotechnology 03/2015; 31(5). DOI:10.1007/s11274-015-1836-z