Biosensors and Bioelectronics (BIOSENS BIOELECTRON )

Publisher: Elsevier


Biosensors & Bioelectronics is the principal international journal devoted to research, design, development and application of biosensors and bioelectronics. It is an interdisciplinary journal serving professionals with an interest in the exploitation of biological materials in novel diagnostic and electronic devices. Biosensors are defined as analytical devices incorporating a biological material (e.g. tissue, microorganisms, organelles, cell receptors, enzymes, antibodies, nucleic acids etc.), a biologically derived material or a biomimic intimately associated with or integrated within a physicochemical transducer or transducing microsystem, which may be optical, electrochemical, thermometric, piezoelectric or magnetic. Biosensors usually yield a digital electronic signal which is proportional to the concentration of a specific analyte or group of analytes. While the signal may in principle be continuous, devices can be configured to yield single measurements to meet specific market requirements. Biosensors have been applied to a wide variety of analytical problems including in medicine, the environment, food, process industries, security and defence. The emerging field of Bioelectronics seeks to exploit biology in conjuction with electronics in a wider context encompassing, for example, biomaterials for information processing, information storage and actuators. A key aspect is the interface between biological materials and electronics. While endeavouring to maintain coherence in the scope of the journal, the editors will accept reviews and papers of obvious relevance to the community, which describe important new concepts, underpin understanding of the field or provide important insights into the practical application of biosensors and bioelectronics.

  • Impact factor
    Show impact factor history
    Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    Biosensors and Bioelectronics website
  • Other titles
    Biosensors & bioelectronics (Online), Biosensors and bioelectronics
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details


  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Voluntary deposit by author of pre-print allowed on Institutions open scholarly website and pre-print servers
    • Voluntary deposit by author of authors post-print allowed on institutions open scholarly website including Institutional Repository
    • Deposit due to Funding Body, Institutional and Governmental mandate only allowed where separate agreement between repository and publisher exists
    • Set statement to accompany deposit
    • Published source must be acknowledged
    • Must link to journal home page or articles' DOI
    • Publisher's version/PDF cannot be used
    • Articles in some journals can be made Open Access on payment of additional charge
    • NIH Authors articles will be submitted to PMC after 12 months
    • Authors who are required to deposit in subject repositories may also use Sponsorship Option
    • Pre-print can not be deposited for The Lancet
  • Classification
    ​ green

Publications in this journal

  • [show abstract] [hide abstract]
    ABSTRACT: Considering the fact that polyphenols have versatile activity in-vivo, its detection and quantification is very much important for healthy diet. Laccase enzyme can convert polyphenols to yield mono/polyquinones which can quench Quantum dots fluorescence. This phenomenon of charge transfer from quinones to QDs was exploited as optical labels to detect polyphenols. CdTe QD may undergo dipolar interaction with quinones as a result of broad spectral absorption due to multiple excitonic states resulting from quantum confinement effects. Thus, “turn-off” fluorescence method was applied for ultrasensitive detection of polyphenols by using laccase. We observed proportionate quenching of QDs fluorescence with respect to polyphenol concentration in the range of 100 ug–1 ng/mL. Also, quenching of photoluminescence was highly efficient and stable and could detect individual and total polyphenols with high sensitivity (LOD-1 ng/mL). Moreover, proposed method was highly efficient than any other reported methods in terms of sensitivity, specificity and selectivity. Therefore, a novel optical sensor was developed for the detection of polyphenols at sensitive level based on the charge transfer mechanism.
    Biosensors and Bioelectronics 07/2014; 57:317-323.
  • [show abstract] [hide abstract]
    ABSTRACT: A sensitive and selective electrochemical biosensor is developed for the determination of chloramphenicol (CAP) exploring its direct electron transfer processes in in-vitro model and pharmaceutical samples. This biosensor exploits a selective binding of CAP with aptamer, immobilized onto the poly-(4-amino-3-hydroxynapthalene sulfonic acid) (p-AHNSA) modified edge plane pyrolytic graphite. The electrochemical reduction of CAP was observed in a well-defined peak. A quartz crystal microbalance (QCM) study is performed to confirm the interaction between the polymer film and the aptamer. Cyclic voltammetry (CV) and square wave voltammetry (SWV) were used to detect CAP. The in-vitro CAP detection is performed using the bacterial strain of Haemophilus influenza. A significant accumulation of CAP by the drug sensitive H. influenza strain is observed for the first time in this study using a biosensor. Various parameters affecting the CAP detection in standard solution and in in vitro detection are optimized. The detection of CAP is linear in the range of 0.1–2500 nM with the detection limit and sensitivity of 0.02 nM and 0.102 µA/nM, respectively. CAP is also detected in the presence of other common antibiotics and proteins present in the real sample matrix, and negligible interference is observed.
    Biosensors and Bioelectronics 05/2014; 15:337–342.
  • [show abstract] [hide abstract]
    ABSTRACT: We have designed here a label-free direct electrochemical immunosensor for the detection of cytochrome c (cyt c), a heme containing metalloprotein using its specific monoclonal antibody. Two nanocomposite-based electrochemical immunosensor platforms were evaluated for the detection of cyt c; (i) self-assembled monolayer (SAM) on gold nanoparticles (GNP) in polypyrrole (PPy) grafted screen printed electrodes (SPE) and (ii) carbon nanotubes (CNT) integrated PPy/SPE. The nanotopologies of the modified electrodes were confirmed by scanning electron microscopy. Electrochemical impedance spectroscopy and cyclic voltammetry were employed to monitor the stepwise fabrication of the nanocomposite immunosensor platforms. In the present method, the label-free quantification of cyt c is based on the direct electron transfer between Fe (III)/Fe (II)-heme redox active site of cyt c selectively bound to anti-cyt c nanocomposite modified SPE. GNP/PPy and CNT/PPy nanocomposites promoted the electron transportation through the conductive pore channels. The overall analytical performance of GNP/PPy based immunosensor (detection limit 2 nM; linear range: 2 nM to 150 µM) was better than the anti-cyt c/CNT/PPy (detection limit 10 nM; linear range: 10 nM to 50 µM). Further, the measurement of cyt c release in cell lysates of cardiomyocytes using the GNP/PPy based immunosensor gave an excellent correlation with standard ELISA.
    Biosensors and Bioelectronics 04/2014; 54:115–121.
  • Biosensors and Bioelectronics 03/2014; 53:472.
  • [show abstract] [hide abstract]
    ABSTRACT: Influenza virus represents a major concern of human health and animal production. PB1-F2 is a small proapoptotic protein supposed to contribute to the virulence of influenza A virus (IAV). However, the molecular mechanism of action of PB1-F2 is still unclear .PB1-F2 expression and behavior during the viral cycle is difficult to follow with classical biochemical methods. In this work we have developed an electrochemical biosensor based on immuno-detection system for quantification of PB1-F2 protein in infected cell. The electrochemical immunosensor was based on conducting copolypyrrole integrating ferrocenyl group as redox marker for enhancing signal detection. A specific anti-PB1-F2 monoclonal antibody was immobilized on the copolypyrrole layer via biotin-streptavidin system. We demonstrate that this electrochemical system sensitively detect purified recombinant PB1-F2 over a wide range of concentrations from 5 nM to 1.5 µM. The high sensor sensitivity allowed the detection of PB1-F2 in lysates of infected cells confirming that PB1-F2 is expressed in early stages of viral cycle. The immunosensor developed shows enhanced performances for the evaluation of PB1-F2 protein concentration in biological samples and could be applied for studying of PB1-F2 during influenza virus infection.
    Biosensors and Bioelectronics 02/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: Easy, sensitive, rapid and low cost ochratoxin biosensors are strongly demanded in food analysis since Ochratoxin A (OTA) is a widely diffused food contaminant, highly detrimental for human health. In this work, a novel plasmonic based optical biosensor prototype for ochratoxin A is described. It exploits the metal-enhanced fluorescence phenomenon due to the silver film over nanosphere plasmonic substrate. Since ochratoxin A could be present in different food commodities, sensor performances have been tested on three different matrices (dried milk, juices, and wheat mix). Firstly, a common OTA extraction solvent and a labeling and detection protocol were defined for the analyzed matrices. Then, the efficiency of the Ag–FON surfaces in signal amplification for the detection of low ochratoxin A concentrations was defined. Using samples spiked with OTA–AF 647 or with unlabeled OTA we were able to detect the mycotoxin at concentrations lower than E.U. specifications of 0.5 μg/kg in wheat, milk and apple juice. The test performances are comparable to those of ELISA kits but the platform presented here, once optimized, present some perspective advantages, such as: low cost and time consuming, versatility of the protocol for the investigation of different matrices, employment also in non-qualified laboratories, small dimensions that allow its integration in a compact device for OTA on–site detection.
    Biosensors and Bioelectronics 02/2014;
  • Biosensors and Bioelectronics 01/2014; 52(15):44-49.
  • Biosensors and Bioelectronics 01/2014; 51:47-54.
  • [show abstract] [hide abstract]
    ABSTRACT: We report here a fluorescence quenching based non-enzymatic method for sensitive and reliable detection of free bilirubin in blood serum samples using human serum albumin (HSA) stabilized gold nanoclusters (HSA-AuNCs) as fluorescent probe. The fluorescence of the nano clusters was strongly quenched by bilirubin in a concentration dependent manner by virtue of the inherent specific interaction between bilirubin and HSA. A strong binding constant of 0.55×106 L mole−1 between the HSA-AuNC and bilirubin was discerned. The nano clusters each with size ~1.0 nm (in diameter) and a core of Au18 were homogeneously distributed in HSA molecules as revealed from the respective high resolution transmission electron microscopic and mass spectroscopic studies. The fluorescence quenching phenomena which obeyed a simple static quenching mechanism, was utilized for interference free detection of bilirubin with minimum detection limit (DL) of 248±12 nM (S/N=3). The fluorescence response of HSA-AuNCs against bilirubin was practically unaltered over a wide pH (6–9) and temperature (25–50 °C) range. Additionally, peroxidase-like catalytic activity of these nanoclusters was exploited for colorimetric detection of bilirubin in serum sample with a DL of 200±19 nM by following the decrease in absorbance (at λ440 nm) of the reaction and its rate constant (Kp) of 2.57±0.63 mL μg−1min−1. Both these fluorometric and colorimetric methods have been successfully used for detection of free bilirubin in blood serum samples.
    Biosensors and Bioelectronics 01/2014;
  • [show abstract] [hide abstract]
    ABSTRACT: A new potentiometric sensor based on molecularly imprinted nanoparticles produced via the solid-phase imprinting method was developed. For histamine quantification, the nanoparticles were incorporated within a membrane, which was then used to fabricate an ion-selective electrode. The use of nanoparticles with high affinity and specificity allowed for label-free detection/quantification of histamine in real samples with short response times. The sensor could selectively quantify histamine in presence of other biogenic amines in real wine and fish matrices. The limit of detection achieved was 1.12×10−6 mol L−1, with a linear range between 10−6 to 10−2 mol L−1 and a response time below 20 s, making the sensor as developed a promising tool for direct quantification of histamine in the food industry.
    Biosensors and Bioelectronics 01/2014;

Related Journals