The International Journal of Life Cycle Assessment (INT J LIFE CYCLE ASS )

Description

The International Journal of Life Cycle Assessment (Int J LCA) is the first journal devoted entirely to LCA. LCA has become a recognized instrument to assess the ecological burdens and impacts connected with products and systems, or, more generally, with human activities. The LCA-Journal - which has been expanded by a section on Life Cycle Management (LCM) - is a forum for: Scientists developing LCA and LCM; LCA and LCM practitioners; Managers concerned with environmental aspects of products; Governmental environmental agencies responsible for product quality; Scientific and industrial societies involved in LCA development; Ecological institutions and bodies.

  • Impact factor
    3.09
    Hide impact factor history
     
    Impact factor
  • 5-year impact
    3.55
  • Cited half-life
    5.50
  • Immediacy index
    0.32
  • Eigenfactor
    0.01
  • Article influence
    0.96
  • Website
    International Journal of Life Cycle Assessment website
  • Other titles
    International journal of life cycle assessment (Online)
  • ISSN
    0948-3349
  • OCLC
    60628611
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: At the 20th Society of Environmental Toxicology and Chemistry (SETAC) Europe Life Cycle Assessment Case Study Symposium, 24–26 November 2014, Novi Sad (Serbia), Anne-Marie Boulay received the SETAC Europe Young Scientist Life Cycle Assessment (LCA) Award 2014.Chemical engineer by formation, Anne-Marie finished her Ph.D. in 2013 at the CIRAIG and the Chemical Engineering Department at the Ecole Polytechnique of Montreal (Canada). Her research focused on the development of water footprinting and water-use impact assessment methods within the life cycle assessment (LCA) framework. She started with the development of a novel approach for water-use inventory in LCA (Boulay et al. 2011a), a necessary step to develop an impact assessment method modeling the human health impact of loss of functionality of water for human users (Boulay et al. 2011b). Anne-Marie’s deep involvement and dedicated activity within the community on water footprinting methods is also shown through two papers comparing ...
    The International Journal of Life Cycle Assessment 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose Current comparative life cycle assessment (LCA) studies claim to answer whether it is better or worse for the environment to change from old to new systems. Most commonly, the attributional LCA (ALCA) is practised despite its limitations to describe market effects. Hence, an attempt is done here to include market effects in the ALCA practice for comparisons in order to improve ALCA. The purpose is neither to investigate which LCA concept, ALCA, consequential LCA or decisional LCA, is the best for comparisons nor which is the best for decision-making. Methods Here, for the first time, a method based on marked changes which can be used for sensitivity checks of comparative ALCAs, advanced ALCA (AALCA) is presented. The new concept of global change mix factors (GCMF) is introduced. The method, based on accessible market data, is applied to previous comparative ALCAs of conductive adhesives, cooling modules used in radio base stations, office computing systems, as well as personal devices usage, here represented by multifunctional smartphones replacing other devices such as digital cameras. Results and discussion The results show that AALCA based on market data improves the understanding and can act as a sensitivity check of comparative ALCA results. For declining markets of products, with relatively high eco-environmental impacts, the difference between comparative AALCA and ALCA can be significant. As AALCA is founded in marginal electricity thinking and uses market data, there are similarities between AALCA and simplistic consequential LCA (CLCA). However, AALCA is not intended to replace CLCA or decisional LCA (DLCA). Conclusions By applying allocation factors, GCMF, based on real or future market changes, the interdependence of global markets and micro-level LCA shifts can be taken into account in comparative micro-level ALCA studies and make them more robust. Further, the sensitivity of using price units instead of physical units, as the basis for the GCMF, should be investigated. The degree to which AALCA and CLCA can complement each other should be examined. Also, the degree to which the GCMF used in AALCA-H address rebound effects should be further explored. The annual eco-environmental impacts of mobile devices towards 2020 are also of interest, and more LCA case studies are welcome.
    The International Journal of Life Cycle Assessment 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose This paper compares environmental impacts of two packaging options for contrast media offered by GE Healthcare: +PLUSPAK™ polymer bottle and traditional glass bottle. The study includes all relevant life cycle stages from manufacturing to use and final disposal of the bottles and includes evaluation of a variety of end-of-life disposal scenarios. The study was performed in accordance with the international standards ISO 14040/14044, and a third-party critical review was conducted. Methods The functional unit is defined as the packaging of contrast media required to deliver one dose of 96 mL to a patient for an X-ray procedure. Primary data are from GE Healthcare and its suppliers; secondary data are from the ecoinvent database and the literature. A variety of end-of-life disposal scenarios are explored using both cutoff and market-based allocation. Impact assessment includes human health (midpoint) and ecosystems and resources (end point) categories from ReCiPe (H) and cumulative energy demand. Sensitivity analyses include (1) bottle size, (2) secondary packaging, (3) manufacturing electricity, (4) glass recycled content, (5) scrap rate, (6) distribution transport, (7) contrast media, and (8) choice of impact assessment method. Uncertainty analysis is performed to determine how data quality affects the study conclusions. Results and discussion This study indicates that the polymer bottle outperforms the glass bottle in every environmental impact category considered. Bottle components are the most significant contributors, and the vial body has the highest impacts among bottle components for both polymer and glass bottles. The polymer bottle exhibits lower impact in all impact categories considered regardless of the following: end-of-life treatment (using either cutoff or market-based allocation), bottle size, manufacturing electricity grid mix, glass recycled content, scrap rate, contrast media, distribution transport (air vs. ocean), and choice of impact assessment method. Secondary packaging can be a major contributor to impact. The polymer bottle has considerably lower impact compared to the glass bottle for all multi-pack configurations, but the comparison is less clear for single-pack configurations due to significantly higher packaging material used per functional dose, resulting in proportionally higher impacts in all impact categories. Conclusions The lower impacts of the polymer bottle for this packaging application can be attributed to lower material and manufacturing impacts, lower distribution impacts, and lower end-of-life disposal impacts. The results of this study suggest that using polymer rather than glass bottles provides a means by which to lower environmental impact of contrast media packaging.
    The International Journal of Life Cycle Assessment 12/2014; 19(12).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose The ISO 14044 standard for life cycle assessment (LCA) provides the reference decision hierarchy for dealing with multi-functional processes. We observe that, in practice, the consistent implementation of this hierarchy by LCA practitioners and LCA guidance document developers may be limited. In an attempt to explain this observation, and to offer suggestions as to how consistency in LCA practice might be improved, we identify and compare the rationales for (and limitations of) different common approaches to solving multi-functionality problems in LCA. Methods The different prevalent understandings of specific approaches for dealing with multi-functional processes were identified, and their respective rationales were analyzed. This takes into account identifying the implicit underlying assumptions regarding the nature and purpose of LCA that support each approach. Results and discussion We identified what we believe to be three internally consistent but mutually exclusive schools of thought amongst LCA practitioners, which differ in subtle but important ways in terms of their understanding of the nature and purpose of LCA, and the multi-functionality solutions necessary to support them. These three divisions follow two demarcations. The first is between consequential and attributional data modeling approaches. The second is between adherence to a natural science-based approach (privileging physical allocation solutions) and a socioeconomic approach (favoring economic allocation solutions) in attributional data modeling. Conclusions We conclude that the ISO 14044 multi-functionality hierarchy should explicitly differentiate between attributional and consequential data modeling applications. We question the feasibility and practical utility of system expansion (currently privileged in the ISO hierarchy) in attributional data modeling applications. We suggest that ISO 14044 should also make explicit its rationale for privileging natural science-based approaches to solving multi-functionality problems and to more clearly differentiate between natural science and social science-based approaches. We also call for the formulation of additional guidance for solving multi-functionality problems, in particular for justifying the use of lower-tier solutions from the ISO hierarchy when these are applied in LCA studies. We suggest that this additional guidance and clarity in ISO 14044 will contribute to increased consistency in LCA practice and also increase the potential for users of information from LCA studies to make informed decisions as to their relevance within the context of specific intended applications.
    The International Journal of Life Cycle Assessment 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose Because the potential impacts of emissions and extractions can be sensitive to timing, the temporal aggregation of life cycle inventory (LCI) data has often been cited as a limitation in life cycle assessment (LCA). Until now, examples of temporal emission and extraction distributions were restricted to the foreground processes of product systems. The objective of this paper is to evaluate the relevance of considering the temporal distribution of the background system inventory. Methods The paper focuses on the global warming impact category for which so-called dynamic characterization factors (CFs) were developed and uses the ecoinvent v2.2 database as both an example database to which temporal information can be added and a source of product systems to test the relevance of adding temporal information to the background system. Temporal information was added to the elementary and intermediate exchanges of 22 % of the unit processes in the database. Using the enhanced structure path analysis (ESPA) method to generate temporally differentiated LCIs in conjunction with time-dependent global warming characterization factors, potential impacts were calculated for all 4,034 product systems in the ecoinvent database. Results and discussion Each time, the results were calculated for (1) systems in which temporal information was only added to the first two tiers, representing studies in which only the foreground system is temporally differentiated, and (2) systems in which temporal information was also added to the background system. For 8.6 % of the database product systems, adding temporal differentiation to background unit processes affected the global warming impact scores by more than 10 %. For most of the affected product systems, considering temporal information in the background unit processes decreased the global warming impact scores. The sectors that show most sensitivity to the temporal differentiation of background unit processes are associated with wood and biofuel sectors. Conclusions Even though the addition of temporal information to unit processes in LCI databases would not benefit every LCA study, the enhancement can be relevant. It allows for a more accurate global warming impact assessment, especially for LCAs in which products of biomass are present in substantial amounts. Relevance for other impact categories could be discussed in further work.
    The International Journal of Life Cycle Assessment 11/2014; 19(11).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose: Odour is an important aspect of systems for human and agricultural waste management and many technologies are developed with the sole purpose of reducing odour. Compared with greenhouse gas assessment and the assessment of toxicity, odour assessment has received little attention in the life cycle assessment (LCA) community. This article aims to redress this. Methods: Firstly, a framework for the assessment of odour impacts in LCA was developed considering the classical LCA framework of emissions, midpoint and endpoint indicators. This suggested that an odour footprint midpoint indicator was worth striving for. An approach to calculating an areal indicator we call “odour footprint”, which considers the odour detection threshold, the diffusion rate and the kinetics of degradation of odourants, was implemented in MATLAB. We demonstrated the use of the characterisation factors we calculated in a case study based on odour removal technology applied to a pig barn. Results and discussion: We produced a list of 33 linear characterisation factors based on hydrogen sulphide equivalents, analogous to the linear carbon dioxide equivalency factors in use in carbon footprinting, or the dichlorobenzene equivalency factors developed for assessment of toxic impacts in LCA. Like the latter, this odour footprint method does not take local populations and exposure pathway analysis into account—its intent is not to assess regulatory compliance or detailed design. The case study showed that despite the need for materials and energy, large factor reductions in odour footprint and eutrophication potential were achieved at the cost of a smaller factor increase in greenhouse emissions. Conclusions: The odour footprint method is proposed as an improvement on the established midpoint method for odour assessment in LCA. Unlike it, the method presented here considers the persistence of odourants. Over time, we hope to increase the number of characterised odourants, enabling analysts to perform simple site-generic LCA on systems with odourant emissions.
    The International Journal of Life Cycle Assessment 11/2014; 19:1891–1900.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose The paper provides an empirical assessment of an uninterruptible power supply (UPS) system based on hydrogen technologies (HT-UPS) using renewable energy sources (RES) with regard to its environmental impacts and a comparison to a UPS system based on the internal combustion engine (ICE-UPS). Methods For the assessment and comparison of the environmental impacts, the life-cycle assessment (LCA) method was applied, while numerical models for individual components of the UPS systems (electrolyser, storage tank, fuel cell and ICE) were developed using GaBi software. The scope of analysis was cradle-to-end of utilisation with functional unit 1 kWh of uninterrupted electricity produced. For the life-cycle inventory analysis, quantitative data was collected with on-site measurements on an experimental system, project documentation, GaBi software generic databases and literature data. The CML 2001 method was applied to evaluate the system’s environmental impacts. Energy consumption of the manufacturing phase was estimated from gross value added (GVA) and the energy intensity of the industry sector in the manufacturer’s country. Results and discussion In terms of global warming (GW), acidification (A), abiotic depletion (AD) and eutrophication (E), manufacturing phase of HT-UPS accounts for more than 97 % of environmental impacts. Electrolyser in all its life-cycle phases contributes above 50 % of environmental impacts to the system’s GW, A and AD. Energy return on investment (EROI) for the HT-UPS has been calculated to be 0.143 with distinction between renewable (roughly 60 %) and non-renewable energy resources inputs. HT-UPS’s life-cycle GW emissions have been calculated to be 375 g of CO2 eq per 1 kWh of uninterruptible electric energy supplied. All these values have also been calculated for the ICE-UPS and show that in terms of GW, A and AD, the ICE-UPS has bigger environmental impacts and emits 1,190 g of CO2 eq per 1 kWh of uninterruptible electric energy supplied. Both systems have similar operation phase energy efficiency. The ICE-UPS has a higher EROI but uses almost none RES inputs. Conclusions The comparison of two different technologies for providing UPS has shown that in all environmental impact categories, except eutrophication, the HT-UPS is the sounder system. Most of HT-UPS’s environmental impacts result from the manufacturing phase. On the contrary, ICE-UPS system’s environmental impacts mainly result from operational phase. Efficiency of energy conversion from electricity to hydrogen to electricity again is rather low, as is EROI, but these will likely improve as the technology matures.
    The International Journal of Life Cycle Assessment 11/2014; 19(11).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose Over the last decade, the rehabilitation/renovation of existing buildings has increasingly attracted the attention of scientific community. Many studies focus intensely on the mechanical and energy performance of retrofitted/renovated existing structures, while few works address the environmental impact of such operations. In the present study, the environmental impact of typical retrofit operations, referred to masonry structures, is assessed. In particular, four different structural options are investigated: local replacement of damaged masonry, mortar injection, steel chain installation, and grid-reinforced mortar application. Each different option is analyzed with reference to proper normalized quantities. Thus, the results of this analysis can be used to compute the environmental impact of real large-scale retrofit operations, once the amount/extension of them is defined in the design stage. The final purpose is to give to designers the opportunity to monitor the environmental impact of different retrofit strategies and, once structural requirements are satisfied, identify for each real case the most suitable retrofit option. Methods The environmental impact of the structural retrofit options is assessed by means of a life-cycle assessment (LCA) approach. A cradle to grave system boundary is considered for each retrofit process. The results of the environmental analysis are presented according to the data format of the Environmental Product Declaration (EPD) standard. Indeed, the environmental outcomes are expressed through six impact categories: global warming, ozone depletion, eutrophication, acidification, photochemical oxidation, and nonrenewable energy. Results and discussion For each retrofit option, the interpretation analysis is conducted in order to define which element, material, or process mainly influenced the LCA results. In addition, the results revealed that the recycling of waste materials provides environmental benefits in all the categories of the LCA outcomes. It is also pointed out that a comparison between the four investigated options would be meaningful only once the exact amount of each operation is defined for a specific retrofit case. Conclusions This paper provides a systematic approach and environmental data to drive the selection and identification of structural retrofit options for existing buildings, in terms of sustainability performance. The final aim of this work is also to provide researchers and practitioners, with a better understanding of the sustainability aspects of retrofit operations. In fact, the environmental impacts of the retrofit options here investigated can be used for future research/practical activities, to monitor and control the environmental impact of structural retrofit operations of existing masonry buildings.
    The International Journal of Life Cycle Assessment 10/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Ccascading Systems create fewer environmental impacts than the primary Wood systems, if system expansion is based on wood energy. The most noticeable advantages were detected for the Impact categories of land transformation and occupation and the demand of primary energy from renewable sources. The results of the sensitivity analyses indicate that the advantage of the cascading system is robust against the majority of considered factors. Efficiency and the method of incineration at the end of life do influence the results.
    The International Journal of Life Cycle Assessment 10/2014; 19(10):1755 - 1766.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose Health care infection control has led to increased utilization of disposable medical devices, which has subsequently led to adverse environmental effects attributed to health care and its supply chain. In dental practice, the dental bur is a commonly used instrument that can be either reused or used once and then disposed. To evaluate the disparities in environmental impacts of disposable and reusable dental burs, a comparative life cycle assessment (LCA) was performed. Methods The functional unit was defined as one reusable dental bur, where the maximum instances reused was 30 (or in the case of a disposable, the equivalent functional unit would be 30 disposable dental burs). The system boundary included all cradle-to-grave aspects of both single-use and reused burs, including raw material extraction, manufacturing, packaging, distribution, reuse, and disposal. Primary data included the following: operating parameters for ultrasonic cleaning, manual cleaning, and autoclaving of the burs. The secondary data for raw material extraction and production of dental bur and packaging were obtained directly from life cycle inventory databases. Sensitivity analyses were also performed with respect to ultrasonic and autoclave loading. Results and discussion Findings from this research showed that when the ultrasonic and autoclave were loaded optimally, reusable burs had 40 % less of an environmental impact than burs used on a disposable basis. When the autoclave and ultrasonic were loaded to approximately two-third capacity, four environmental impact categories favored reusable burs (i.e., ozone depletion, smog, respiratory effects, exotoxicity), and four impact categories environmentally favored disposables (i.e., acidification, eutrophication, carcinogenics, and non-carcinogenics). When the autoclave and ultrasonic were loaded to approximately one-third capacity, reusable dental burs posed more negative environmental impacts in eight of nine environmental impact categories when compared to disposable burs. Conclusions Operational efficiency of ultrasonic and autoclave cleaning equipment should be emphasized to enhance the environmental performance of bur reuse. In fact, improper loading of the ultrasonic and autoclave can lead to greater adverse environmental impacts than if the burs were treated as disposables. The environmental and economic impacts associated with bur reuse are expected to be similar with other dental devices that are designated as disposable but are capable of being reused (e.g., scalpels, forceps).
    The International Journal of Life Cycle Assessment 09/2014; 19(9).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose So far no calculations have been made for greenhouse gas (GHG) emissions from forestry in East Norway. This region stands for 80 % of the Norwegian timber production. The aim of this study was to assess the annual GHG emissions of Norwegian forestry in the eastern parts of the country from seed production to final felling and transport of timber to sawmill and wood processing industry (cradle-to-gate inventory), based on specific Norwegian data. Methods The life cycle inventory was conducted with SimaPro applying primary and secondary data from Norwegian forestry. GHG emissions of fossil-related inputs from the technosphere were calculated for the functional unit of 1 m3 timber extracted and delivered to industry gate in East Norway in 2010. The analysis includes seed and seedling production, silvicultural operations, forest road construction and upgrading, thinning, final felling, timber forwarding and timber transport on road and rail from the forest to the industry. Norwegian time studies of forestry machines and operations were used to calculate efficiency, fuel consumption and transport distances. Due to the lack of specific Norwegian data in Ecoinvent, we designed and constructed unit processes based on primary and secondary data from forestry in East Norway. Results and discussion GHG emissions from forestry in East Norway amounted to 17.893 kg CO2-equivalents per m3 of timber delivered to industry gate in 2010. Road transport of timber accounted for almost half of the total GHG emissions, final felling and forwarding for nearly one third of the GHG emissions. Due to longer road transport distances, pulpwood had higher impact on the climate change category than saw timber. The construction of forest roads had the highest impact on the natural land transformation category. The net CO2 emissions of fossil CO2 corresponded to 2.3 % of the CO2 sequestered by 1 m3 of growing forest trees and were compared to a calculation of biogenic CO2 release from the forest floor as a direct consequence of harvesting. Conclusions Shorter forwarding and road transport distances, increased logging truck size and higher proportion of railway transport may result in lower emissions per volume of transported timber. A life cycle assessment of forestry may also consider impacts on environmental categories other than climate change. Biogenic CO2 emissions from the soil may be up to 10 times higher than the fossil-related emissions, at least in a short-term perspective, and are highly dependent on stand rotation length.
    The International Journal of Life Cycle Assessment 09/2014; 19(9).
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose The conventional decision-making for bridges is mostly focusing on technical, economical, and safety perspectives. Nowadays, the society devotes an ever-increased effort to the construction sector regarding their environmental performance. However, considering the complexity of the environmental problems and the diverse character of bridges, the related research for bridge as a whole system is very rare. Most existing studies were only conducted for a single indicator, part of the structure components, or a specific life stage. Methods Life Cycle Assessment (LCA) is an internationally standardized method for quantifying the environmental impact of a product, asset, or service throughout its whole life cycle. However, in the construction sector, LCA is usually applied in the procurement of buildings, but not bridges as yet. This paper presents a comprehensive LCA framework for road bridges, complied with LCA ReCiPe (H) methodology. The framework enables identification of the key structural components and life cycle stages of bridges, followed by aggregation of the environmental impacts into monetary values. The utility of the framework is illustrated by a practical case study comparing five designs for the Karlsnäs Bridge in Sweden, which is currently under construction. Results and discussion This paper comprehensively analyzed 20 types of environmental indicators among five proposed bridge designs, which remedies the absence of full spectrum of environmental indicators in the current state of the art. The results show that the monetary weighting system and uncertainties in key variables such as the steel recycling rate and cement content may highly affect the LCA outcome. The materials, structural elements, and overall designs also have varying influences in different impact categories. The result can be largely affected by the system boundaries, surrounding environment, input uncertainties, considered impact indicators, and the weighting systems applied; thus, no general conclusions can be drawn without specifying such issues. Conclusions Robustly evaluating and ranking the environmental impact of various bridge designs is far from straightforward. This paper is an important attempt to evaluate various designs from full dimensions. The results show that the indicators and weighting systems must be clearly specified to be applicable in a transparent procurement. This paper provides vital knowledge guiding the decision maker to select the most LCA-feasible proposal and mitigate the environmental burden in the early stage.
    The International Journal of Life Cycle Assessment 09/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose This article summarizes student performance and survey data from a recent massive open online course (MOOC) on life cycle assessment (LCA). Its purpose is to shed light on student learning outcomes, challenges, and success factors, as well as on improvement opportunities for the MOOC and the role of online courses in LCA education in general. Methods Student survey data and course performance data were compiled, analyzed, and interpreted for 1257 students who completed a pre-course survey and 262 students who completed a post-course survey. Both surveys were designed to assess student learning outcomes, topical areas of difficulty, changing perceptions on the nature of LCA, and future plans after completing the MOOC. Results and discussion Results suggest that online courses can attract and motivate a large number of students and equip them with basic analytical skills to move on to more advanced LCA studies. However, results also highlight how MOOCs are not without structural limitations, especially related to mostly “locked in” content and the impracticality of directly supporting individual students, which can create challenges for teaching difficult topics and conveying important limitations of LCA in practice. Conclusions Online courses, and MOOCs in particular, may present an opportunity for the LCA community to efficiently recruit and train its next generations of LCA analysts and, in particular, those students who might not otherwise have an opportunity to take an LCA course. More surveys should be conducted by LCA instructors and researchers moving forward to enable scientific development and sharing of best practice teaching methods and materials.
    The International Journal of Life Cycle Assessment 09/2014;