Experimental Astronomy (EXP ASTRON )

Publisher: Springer Verlag

Description

Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments. Experimental Astronomy acts as a medium for the publication of papers on the instrumentation and data handling necessary for the conduct of astronomy at all wavelength fields. Experimental Astronomy publishes full-length articles research letters and reviews on developments in detection techniques instruments and data analysis and image processing techniques. Occasional special issues are published giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects such as satellite experiments or ground-based telescopes or of specialized techniques.

Impact factor 2.66

  • Hide impact factor history
     
    Impact factor
  • 5-year impact
    2.32
  • Cited half-life
    3.50
  • Immediacy index
    0.60
  • Eigenfactor
    0.00
  • Article influence
    0.74
  • Website
    Experimental Astronomy website
  • Other titles
    Experimental astronomy
  • ISSN
    0922-6435
  • OCLC
    20297628
  • Material type
    Periodical, Internet resource
  • Document type
    Journal / Magazine / Newspaper, Internet Resource

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as arXiv.org
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Robotic telescopes usually run under the control of a scheduler, which provides high level control by selecting astronomical targets for observation. TUB_ITAK (Scienti�c and Technological Research Council of Turkey) National Observatory (TUG)-T60 Robotic Telescope is controlled by opensource OCAAS software, formally named Talon. This study introduces new software which was designed for Talon to catch GRB, GAIA and transient alerts. The new GRB software module (daemon process) alertd is running with all other modules of Talon such as telescoped; focus, dome; camerad and telrun. Maximum slew velocity and acceleration limits of the T60 telescope are enough fast for the GRB and transient observations
    Experimental Astronomy 02/2015; 1(1):234-240.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A statistical procedure for the analysis of time-frequency noise maps is presented and applied to LISA Pathfinder mission synthetic data. The procedure is based on the Kolmogorov-Smirnov like test that is applied to the analysis of time-frequency noise maps produced with the spectrogram technique. The influence of the finite size windowing on the statistic of the test is calculated with a Monte Carlo simulation for 4 different windows type. Such calculation demonstrate that the test statistic is modified by the correlations introduced in the spectrum by the finite size of the window and by the correlations between different time bins originated by overlapping between windowed segments. The application of the test procedure to LISA Pathfinder data demonstrates the test capability of detecting non-stationary features in a noise time series that is simulating low frequency non-stationary noise in the system.
    Experimental Astronomy 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stellar classification is an important topic in astronomical tasks such as the study of stellar populations. However, stellar classification of a region of the sky is a time-consuming process due to the large amount of objects present in an image. Therefore, automatic techniques to speed up the process are required. In this work, we study the application of a sparse representation and a dictionary learning for automatic spectral stellar classification. Our dataset consist of 529 calibrated stellar spectra of classes B to K, belonging to the Pulkovo Spectrophotometric catalog, in the 3400−5500Å range. These stellar spectra are used for both training and testing of the proposed methodology. The sparse technique is applied by using the greedy algorithm OMP (Orthogonal Matching Pursuit) for finding an approximated solution, and the K-SVD (K-Singular Value Decomposition) for the dictionary learning step. Thus, sparse classification is based on the recognition of the common characteristics of a particular stellar type through the construction of a trained basis. In this work, we propose a classification criterion that evaluates the results of the sparse representation techniques and determines the final classification of the spectra. This methodology demonstrates its ability to achieve levels of classification comparable with automatic methodologies previously reported such as the Maximum Correlation Coefficient (MCC) and Artificial Neural Networks (ANN).
    Experimental Astronomy 08/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the $\gamma$-ray Cherenkov Astronomy framework mirror coating plays a crucial role in defining the light response of the telescope. We carried out a study for new mirror coating solutions with both a numerical simulation software and a vacuum chamber for small sample production. In this article, we present a new mirror coating solution consisting of a 28-layer interferometric SiO$_{2}$-TiO$_{2}$-HfO$_{2}$ design deposited on a glass substrate, whose average reflectance is above $90\%$ for normally incident light in the wavelength range between 300 and 550 nm.
    Experimental Astronomy 06/2014; 38(1-2).
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Low-inclination, low altitude Earth orbits (LEO) are of increasing importance for astrophysical satellites, due to their low background environment. Here, the South Atlantic Anomaly (SAA) is the region with the highest amount of radiation. We study the radiation environment in a LEO (500-600 km altitude, 4 degrees inclination) through the particle background measured by the Particle Monitor (PM) experiment onboard the BeppoSAX satellite, between 1996 and 2002. Using time series of particle count rates measured by PM we construct intensity maps and derive SAA passage times and fluences. The low-latitude SAA regions are found to have an intensity strongly decreasing with altitude and dependent on the magnetic rigidity. The SAA extent, westward drift and strength vs altitude is shown.
    Experimental Astronomy 05/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The scientific output of the proposed EChO mission (in terms of spectroscopic characterization of the atmospheres of transiting extrasolar planets) will be maximized by a careful selection of targets and by a detailed characterization of the main physical parameters (such as masses and radii) of both the planets and their stellar hosts. To achieve this aim, the availability of high-quality data from other space-borne and ground-based programs will play a crucial role. Here we identify and discuss the elements of the Gaia catalogue that will be of utmost relevance for the selection and characterization of transiting planet systems to be observed by the proposed EChO mission.
    Experimental Astronomy 04/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The JEM-EUSO observatory on board of the International Space Station (ISS) is a proposed pioneering space mission devoted to the investigation of Ultra High Energy Cosmic Rays (UHECRs). Looking downward at the earth's atmosphere with a 60$^\circ$ Field of View (FoV), the JEM-EUSO telescope will detect the fluorescence and Cherenkov UV emission from UHECR induced Extensive Air Showers (EAS) penetrating in the atmosphere. The capability of reconstructing the properties of the primary cosmic ray depends on the accurate measurement of the atmospheric conditions in the region of EAS development. The Atmospheric Monitoring system of JEM-EUSO will continuously monitor the atmosphere at the location of the EAS candidates and between the EAS and the JEM-EUSO telescope. With an UV LIDAR and an Infrared (IR) Camera the system will monitor the cloud cover and retrieve the cloud top altitude with an accuracy of $\sim$ 500 m and the optical depth profile of the atmosphere with an accuracy of $\Delta\tau \leq$ 0.15 and a resolution of 500 m. In this contribution the Atmospheric Monitoring system of JEM-EUSO will be presented. After a brief description of the system, the capability to recover the cloud top height and optical depth and to reconstruct the shower profile will be shown based on satellites data and simulation studies.
    Experimental Astronomy 02/2014;