Experimental Astronomy (EXP ASTRON )

Publisher: Springer Verlag

Description

Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments. Experimental Astronomy acts as a medium for the publication of papers on the instrumentation and data handling necessary for the conduct of astronomy at all wavelength fields. Experimental Astronomy publishes full-length articles research letters and reviews on developments in detection techniques instruments and data analysis and image processing techniques. Occasional special issues are published giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects such as satellite experiments or ground-based telescopes or of specialized techniques.

  • Impact factor
    2.97
    Hide impact factor history
     
    Impact factor
  • 5-year impact
    2.32
  • Cited half-life
    3.50
  • Immediacy index
    0.60
  • Eigenfactor
    0.00
  • Article influence
    0.74
  • Website
    Experimental Astronomy website
  • Other titles
    Experimental astronomy
  • ISSN
    0922-6435
  • OCLC
    20297628
  • Material type
    Periodical, Internet resource
  • Document type
    Journal / Magazine / Newspaper, Internet Resource

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as arXiv.org
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Robotic telescopes usually run under the control of a scheduler, which provides high level control by selecting astronomical targets for observation. TUB_ITAK (Scienti�c and Technological Research Council of Turkey) National Observatory (TUG)-T60 Robotic Telescope is controlled by opensource OCAAS software, formally named Talon. This study introduces new software which was designed for Talon to catch GRB, GAIA and transient alerts. The new GRB software module (daemon process) alertd is running with all other modules of Talon such as telescoped; focus, dome; camerad and telrun. Maximum slew velocity and acceleration limits of the T60 telescope are enough fast for the GRB and transient observations
    Experimental Astronomy 02/2015; 1(1):234-240.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A statistical procedure for the analysis of time-frequency noise maps is presented and applied to LISA Pathfinder mission synthetic data. The procedure is based on the Kolmogorov-Smirnov like test that is applied to the analysis of time-frequency noise maps produced with the spectrogram technique. The influence of the finite size windowing on the statistic of the test is calculated with a Monte Carlo simulation for 4 different windows type. Such calculation demonstrate that the test statistic is modified by the correlations introduced in the spectrum by the finite size of the window and by the correlations between different time bins originated by overlapping between windowed segments. The application of the test procedure to LISA Pathfinder data demonstrates the test capability of detecting non-stationary features in a noise time series that is simulating low frequency non-stationary noise in the system.
    Experimental Astronomy 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The Wendelstein Observatory of Ludwig Maximilians University of Munich has recently been upgraded with a modern 2m robotic telescope. One Nasmyth port of the telescope has been equipped with a wide-field corrector which preserves the excellent image quality (< 0.8" median seeing) of the site (Hopp et al. 2008) over a field of view of 0.7 degrees diameter. The available field is imaged by an optical imager (WWFI, the Wendelstein Wide Field Imager) built around a customized 2 $\times$ 2 mosaic of 4k $\times$ 4k 15 \mu m e2v CCDs from Spectral Instruments. This paper provides an overview of the design and the WWFI's performance. We summarize the system mechanics (including a structural analysis), the electronics (and its electromagnetic interference (EMI) protection) and the control software. We discuss in detail detector system parameters, i.e. gain and readout noise, quantum efficiency as well as charge transfer efficiency (CTE) and persistent charges. First on sky tests yield overall good predictability of system throughput based on lab measurements.
    Experimental Astronomy 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Stellar classification is an important topic in astronomical tasks such as the study of stellar populations. However, stellar classification of a region of the sky is a time-consuming process due to the large amount of objects present in an image. Therefore, automatic techniques to speed up the process are required. In this work, we study the application of a sparse representation and a dictionary learning for automatic spectral stellar classification. Our dataset consist of 529 calibrated stellar spectra of classes B to K, belonging to the Pulkovo Spectrophotometric catalog, in the 3400−5500Å range. These stellar spectra are used for both training and testing of the proposed methodology. The sparse technique is applied by using the greedy algorithm OMP (Orthogonal Matching Pursuit) for finding an approximated solution, and the K-SVD (K-Singular Value Decomposition) for the dictionary learning step. Thus, sparse classification is based on the recognition of the common characteristics of a particular stellar type through the construction of a trained basis. In this work, we propose a classification criterion that evaluates the results of the sparse representation techniques and determines the final classification of the spectra. This methodology demonstrates its ability to achieve levels of classification comparable with automatic methodologies previously reported such as the Maximum Correlation Coefficient (MCC) and Artificial Neural Networks (ANN).
    Experimental Astronomy 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Low-inclination, low altitude Earth orbits (LEO) are of increasing importance for astrophysical satellites, due to their low background environment. Here, the South Atlantic Anomaly (SAA) is the region with the highest amount of radiation. We study the radiation environment in a LEO (500-600 km altitude, 4 degrees inclination) through the particle background measured by the Particle Monitor (PM) experiment onboard the BeppoSAX satellite, between 1996 and 2002. Using time series of particle count rates measured by PM we construct intensity maps and derive SAA passage times and fluences. The low-latitude SAA regions are found to have an intensity strongly decreasing with altitude and dependent on the magnetic rigidity. The SAA extent, westward drift and strength vs altitude is shown.
    Experimental Astronomy 05/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The JEM-EUSO observatory on board of the International Space Station (ISS) is a proposed pioneering space mission devoted to the investigation of Ultra High Energy Cosmic Rays (UHECRs). Looking downward at the earth's atmosphere with a 60$^\circ$ Field of View (FoV), the JEM-EUSO telescope will detect the fluorescence and Cherenkov UV emission from UHECR induced Extensive Air Showers (EAS) penetrating in the atmosphere. The capability of reconstructing the properties of the primary cosmic ray depends on the accurate measurement of the atmospheric conditions in the region of EAS development. The Atmospheric Monitoring system of JEM-EUSO will continuously monitor the atmosphere at the location of the EAS candidates and between the EAS and the JEM-EUSO telescope. With an UV LIDAR and an Infrared (IR) Camera the system will monitor the cloud cover and retrieve the cloud top altitude with an accuracy of $\sim$ 500 m and the optical depth profile of the atmosphere with an accuracy of $\Delta\tau \leq$ 0.15 and a resolution of 500 m. In this contribution the Atmospheric Monitoring system of JEM-EUSO will be presented. After a brief description of the system, the capability to recover the cloud top height and optical depth and to reconstruct the shower profile will be shown based on satellites data and simulation studies.
    Experimental Astronomy 02/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atmospheric spectroscopy of extrasolar planets is an intricate business. Atmospheric signatures typically require a photometric precision of $1 \times 10^{-4}$ in flux over several hours. Such precision demands high instrument stability as well as an understanding of stellar variability and an optimal data reduction and removal of systematic noise. In the context of the EChO mission concept, we here discuss the data reduction and analysis pipeline developed for the EChO end-to-end simulator EChOSim. We present and discuss the step by step procedures required in order to obtain the final exoplanetary spectrum from the EChOSim`raw data' using a simulated observation of the secondary eclipse of the hot-Neptune 55 Cnc e.
    Experimental Astronomy 02/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mounted on the International Space Station(ISS), the Extreme Universe Space Observatory, on-board the Japanese Experimental Module (JEM-EUSO), relies on the well established fluorescence technique to observe Extensive Air Showers (EAS) developing in the earth’s atmosphere. Focusing on the detection of Ultra High Energy Cosmic Rays (UHECR) in the decade of 1020eV, JEM-EUSO will face new challenges by applying this technique from space. The EUSO Simulation and Analysis Framework (ESAF) has been developed in this context to provide a full end-to-end simulation frame, and assess the overall performance of the detector. Within ESAF, angular reconstruction can be separated into two conceptually different steps. The first step is pattern recognition, or filtering, of the signal to separate it from the background. The second step is to perform different types of fitting in order to search for the relevant geometrical parameters that best describe the previously selected signal. In this paper, we discuss some of the techniques we have implemented in ESAF to perform the geometrical reconstruction of EAS seen by JEM-EUSO. We also conduct thorough tests to assess the performances of these techniques in conditions which are relevant to the scope of the JEM-EUSO mission. We conclude by showing the expected angular resolution in the energy range that JEM-EUSO is expected to observe.
    Experimental Astronomy 02/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We present a parameter estimation procedure based on a Bayesian framework by applying a Markov Chain Monte Carlo algorithm to the calibration of the dynamical parameters of the LISA Pathfinder satellite. The method is based on the Metropolis-Hastings algorithm and a two-stage annealing treatment in order to ensure an effective exploration of the parameter space at the beginning of the chain. We compare two versions of the algorithm with an application to a LISA Pathfinder data analysis problem. The two algorithms share the same heating strategy but with one moving in coordinate directions using proposals from a multivariate Gaussian distribution, while the other uses the natural logarithm of some parameters and proposes jumps in the eigen-space of the Fisher Information matrix. The algorithm proposing jumps in the eigen-space of the Fisher Information matrix demonstrates a higher acceptance rate and a slightly better convergence towards the equilibrium parameter distributions in the application to LISA Pathfinder data. For this experiment, we return parameter values that are all within ∼1σ of the injected values. When we analyse the accuracy of our parameter estimation in terms of the effect they have on the force-per-unit of mass noise, we find that the induced errors are three orders of magnitude less than the expected experimental uncertainty in the power spectral density.
    Experimental Astronomy 02/2014;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The Large Observatory For X-ray Timing (LOFT) is one of the candidate missions selected by the European Space Agency for an initial assessment phase in the Cosmic Vision programme. It is proposed for the M3 launch slot and has broad scientific goals related to fast timing of astrophysical X-ray sources. LOFT will carry the Large Area Detector (LAD), as one of the two core science instruments, necessary to achieve the challenging objectives of the project. LAD is a collimated detector working in the energy range 2-50 keV with an effective area of approximately 10 m^2 at 8 keV. The instrument comprises an array of modules located on deployable panels. Lead-glass microchannel plate (MCP) collimators are located in front of the large-area Silicon Drift Detectors (SDD) to reduce the background contamination from off-axis resolved point sources and from the diffuse X-ray background. The inner walls of the microchannel plate pores reflect grazing incidence X-ray photons with a probability that depends on energy. In this paper, we present a study performed with an ad-hoc simulator of the effects of this capillary reflectivity on the overall instrument performance. The reflectivity is derived from a limited set of laboratory measurements, used to constrain the model. The measurements were taken using a prototype collimator whose thickness is similar to that adopted in the current baseline design proposed for the LAD. We find that the experimentally measured level of reflectivity of the pore inner walls enhances the off-axis transmission at low energies, producing an almost flat-top response. The resulting background increase due to the diffuse cosmic X-ray emission and sources within the field of view does not degrade the instrument sensitivity.
    Experimental Astronomy 01/2014; 37(1).