International Journal of Flexible Manufacturing Systems (INT J FLEX MANUF SYS )

Publisher: Springer Verlag


Flexible manufacturing systems (FMS) represent a class of highly automated systems. The increased importance of these highly automated manufacturing systems to the survival of modern industries has resulted in increasing research efforts that address the many issues inherent in flexible manufacturing. However not one periodic publication has been established to serve the research needs of the growing audience of industrial academic and governmental persons becoming involved with flexible machining and flexible assembly systems. The aim of the journal is to provide a consolidated forum for the publication of original high-quality articles on all topics related to flexible manufacturing that heretofore have been dispersed throughout a wide body of literature. The scope of the journal includes analysis to support the design or control of FMSs in which a variety of part types are simultaneously produced using versatile resources. These can be reallocated to produce different part types or a different mix of part types without major delays or investment. A balanced discussion of both theoretical and applied issues may be found in this journal including such matters as decision models performance models managerial issues and industrial needs and applications. Finally the journal cuts across the fields of engineering and management to include operations management manufacturing engineering industrial engineering operations research and management science as they relate to FMS.

Impact factor 0.90

  • Hide impact factor history
    Impact factor
  • 5-year impact
  • Cited half-life
  • Immediacy index
  • Eigenfactor
  • Article influence
  • Website
    International Journal of Flexible Manufacturing Systems website
  • Other titles
    International journal of flexible manufacturing systems (Online), International journal of flexible manufacturing systems
  • ISSN
  • OCLC
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publisher details

Springer Verlag

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on pre-print servers such as
    • Author's post-print on author's personal website immediately
    • Author's post-print on any open access repository after 12 months after publication
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany link to published version (see policy)
    • Articles in some journals can be made Open Access on payment of additional charge
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: This study is motivated by a real problem encountered in the manufacturing and distribution process at a local electronic manufacturer of security devices. We investigate the impact of operations redesign (i.e., operations merging) on the cost of safety stock in a supply chain. A simple safety stock method is used to derive a model for estimating safety stock levels. Our result shows that operations redesign can have a significant impact on safety stock investment. We extend and complement the existing literature in the following aspects: (i) we address the issue of safety stock deployment, i.e., we not only investigate the problem of how many operations should be delayed, but also determine which operations need to be delayed, (ii) we provide an efficient heuristic algorithm to determine which operations need to be merged, and (iii) we find the optimal operations redesign strategies under some special cases. Our analysis also reveals some important conditions and insights for better operations redesign, which enable us not only to decide when an operations redesign is appropriate, but also to suggest the scale and the format of the operations redesign.
    International Journal of Flexible Manufacturing Systems 12/2007; 19(4):516-532.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deadlock-free scheduling of parts is vital for increasing the utilization of an Automated Manufacturing System (AMS). An existing literature survey has identified the role of an effective modeling methodology for AMS in ensuring the appropriate scheduling of the parts on the available resources. In this paper, a new modeling methodology termed as Extended Color Time Net of Set of Simple Sequential Process with Resources (ECTS3PR) has been presented that efficiently handles dynamic behavior of the manufacturing system. The model is subsequently utilized to obtain a deadlock-free schedule with minimized makespan using a new Evolutionary Endosymbiotic Learning Automata (EELA) algorithm. The ECTS3PR model, which can easily handle various relations and structural interactions, proves to be very helpful in measuring and managing system performances. The novel algorithm EELA has the merits of both endosymbiotic systems and learning automata. The proposed algorithm performs better than various benchmark strategies available in the literature. Extensive experiments have been performed to examine the effectiveness of the proposed methodology, and the results obtained over different data sets of varying dimensions authenticate the performance claim. Superiority of the proposed approach has been validated by defining a new performance index termed as the ‘makespan index’ (MI), whereas the ANOVA analysis reveals the robustness of the algorithm.
    International Journal of Flexible Manufacturing Systems 11/2007; 19(4):486-515.
  • [Show abstract] [Hide abstract]
    ABSTRACT: This paper presents an optimal solution, based on Markov decision theory, for the problem of optimal capacity-related reconfiguration of manufacturing systems, under stochastic market demand. Both capacity expansion and reduction are considered. The solution quantitatively takes into account the effect of the ramp-up phenomenon, following each reconfiguration, on the optimal policy. A closed-form solution is presented for when product demand is independently and generally distributed over time. A real case concerning a flexible manufacturing line in the automotive sector is shown, to prove that ignoring the ramp-up effect in the decision process can lead to significant increases in overall costs.
    International Journal of Flexible Manufacturing Systems 09/2007; 19(3):173-194.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective-oriented factory planning is a prerequisite for the economic operation of a factory. As intensive discussions in the literature as well as practical findings in factories over the years show, transformability and logistics are among the key objectives of a factory. It is striking, however, that both objectives have not so far been related to each other. Based on these findings, a method for evaluating the actual as well as the target transformability of a factory has been developed. It allows the user to assess whether the factory possesses adequate and economic transformability. In order to make the method more manageable for users in practice, a software tool is presented, and a benchmarking has been derived from the data collected by evaluating factory transformability. In addition, it has been found that transformability can influence logistics. A procedure will be presented that allows major means of adjustment to be found that improve the logistics objectives of a factory by using transformability. Finally, the outlook for future developments is discussed.
    International Journal of Flexible Manufacturing Systems 09/2007; 19(3):286-307.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The flexibility of production capacities is a means for coping with the challenges in today’s market environment, especially when dealing with strong fluctuations in customers’ demands. The reliable planning and evaluation of these capacities and their inherent flexibilities are considered an important task for many companies. This paper presents a capacity/cost model that considers the impact of market uncertainties and the corresponding capacity flexibilities. It proposes a demand forecasting method, a modeling approach for capacity-related flexibilities and the analysis of the economical correlation between available and required capacities. Based on this, capacity planning can be optimized using this model. The different steps of applying this modeling approach are illustrated with the aid of an example.
    International Journal of Flexible Manufacturing Systems 09/2007; 19(3):151-172.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Reactive scheduling is a procedure followed in production systems to react to unforeseen events that disturb the normal operation of the system. In this paper, a novel operations insertion heuristic is proposed to solve the deadlock-free reactive scheduling problem in flexible job shops, upon the arrival of new jobs. The heuristic utilizes rank matrices (Latin rectangles) to insert new jobs in schedules, while preventing the occurrence of deadlocks or resolving them using the available buffer space (if any). Jobs with alternative processing routes through the system are also considered. The heuristic can be employed to execute two reactive scheduling approaches in a timely efficient manner; to insert the new jobs in the already existing schedule (job insertion) or to reschedule all the jobs in the system (total rescheduling). Using experimental design and analysis of variance (ANOVA), the relative performance of the two approaches is studied and analyzed to provide some measures and guidelines for selecting the appropriate reactive scheduling approach for different problem settings. Three measures of performance are considered in the analysis; efficiency of the revised schedules in terms of the mean flow time, resulting system nervousness, and the required solution time. The results show that, on average, job insertion obtains revised schedules featuring significantly lower system nervousness and slightly higher mean flow time than total rescheduling. However, depending on the system size, number and processing times of the new jobs, and the available flexibility in the system, a trade-off between the two approaches should sometimes be considered.
    International Journal of Flexible Manufacturing Systems 08/2007; 19(3):264-285.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Recent research on highly distributed control methods for complex systems have produced a series of philosophies based on negotiation, that bring together process engineering with computer science. Among these control philosophies, the ones based on multi-agent systems (MAS) have become especially relevant. Furthermore, among a number of MAS implementations, those that use different types of agents at different conceptual/managerial levels are commonly applied. However, these MAS models have the drawback of an excessive dependence on up-to-date information about the products and other elements that move within the system. A new technology has come out that can help solve this problem: radio-frequency identification enhanced information management systems (RFID-IMS). One of these is Auto-ID/EPCglobal technology. This paper shows how a MAS model can be used for controlling a machining system incorporating RFID-IMS technology. The resulting system becomes an RFID-enhanced intelligent manufacturing system (RFID-IMS II).
    International Journal of Flexible Manufacturing Systems 05/2007; 19(1):41-61.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The vision of mass customization has driven a movement toward low volume, high variety mass customization production (MCP) at low price. However, defect identification and defect tracking in such systems are extremely difficult because of the frequent reconfiguration needed by the number of different part types and the interruption of the information flow about quality with each reconfiguration of the system. It is important to quickly rebuild quality information flow with MCP system’s reconfiguration synchronously. This paper introduces a defect tracking method based on Quality Function Deployment for every MCP system module. A defects tracking matrix (DTM) based on the House of Quality directly connects manufacturing technologies with quality defects inside a MCP module. Each MCP reconfiguration requires the DTMs’ rearrangement and DTM-chain is proposed. A dynamic reconstructing algorithm synchronizes the DTM-chain with each MCP reconfiguration. A case study demonstrates the usefulness of the DTM and DTM-chain.
    International Journal of Flexible Manufacturing Systems 01/2007; 19(4):666-684.
  • [Show abstract] [Hide abstract]
    ABSTRACT: As the field of mass customization (MC) attains the status of a mature discipline, two significant research deficits stand out. First, a through metareview of the entire body of MC research that looks at the application value and rigorousness of research is overdue. Second, manufacturing issues, especially those pertaining to quality and the supply chain have been largely ignored. This issue is dedicated to both of these important areas of research. The conclusion with regards to the status of the MC field is that it is currently vibrant, with growing research volume and applications. The manufacturing issues dealt with in this issue are strategically important, dealing with quality and customization issues. The work on quality is the first of its kind: it seeks to generate a defect-tracking matrix consistent with product configurations, enabling agile identification of defects in a mass customization environment. The use of discrete event simulation to deal with the dynamically evolving customized demand so as to minimize cost and schedule disruption is innovative, timely, and profound.
    International Journal of Flexible Manufacturing Systems 01/2007; 19(4):625-629.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dynamic variability in low-volume and highly customized products of a large assembly manufacturing system with an integrated supply chain has been very challenging to capture. Design and product configurations most likely impact outcomes of such broad variability. This article presents a framework to encompass this completely integrated system for using discrete event simulation as a modeling method. The system modeling framework addresses factors including customized configuration attributes and individual customer-preferred considerations for customized configurations. The framework is intended to aid decision-making concerning cost and schedule impacts associated with customization options chosen throughout the supply chain. A real-world example drawn from aerospace is included to demonstrate and validate the operational capability of the proposed framework.
    International Journal of Flexible Manufacturing Systems 01/2007; 19(4):685-712.
  • International Journal of Flexible Manufacturing Systems 01/2007; 19(4):331-333.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In the increasingly competitive global markets, enterprises face challenges in responding to customer orders quickly, as well as producing customized products cost-effectively. This paper proposes a dynamic heuristic-based algorithm for the part input sequencing problem of flexible manufacturing systems (FMSs) in a mass customization (MC) environment. The FMS manufactures a variety of parts, and customer orders arrive dynamically with order size as small as one. Segmental set functions are established in the proposed algorithm to apply the strategy of dynamic workload balancing, and the shortest processing time (SPT) scheduling rule. Theoretical analysis is performed and the effectiveness of the algorithm in dynamic workload balancing under the complex and dynamic environment is proven. The application of the algorithm is illustrated by an example. The potential of its practical applications to the FMSs in make-to-order (MTO) supply chains is also discussed. Further research is provided.
    International Journal of Flexible Manufacturing Systems 01/2007; 19(4):392-409.