Journal of Cognitive Neuroscience (J COGNITIVE NEUROSCI )

Publisher: Cognitive Neuroscience Institute (Norwich, Vt.)

Description

Journal of Cognitive Neuroscience provides a scholarly forum for research involving the interaction of brain and behavior. It is the only journal devoted exclusively to the rapidly expanding field of cognitive neuroscience, which focuses on how brain processes generate cognitive processes. The journal promotes understanding and communication among the mind sciences. Contributions reflect the interdisciplinary nature of the field, including developments in neuroscience, neuropsychology, cognitive psychology, neurobiology, linguistics, computer science, and philosophy. All papers are integrative across disciplines, addressing both descriptions of function and underlying brain events.

  • Impact factor
    4.49
    Show impact factor history
     
    Impact factor
  • 5-year impact
    5.72
  • Cited half-life
    7.20
  • Immediacy index
    0.86
  • Eigenfactor
    0.04
  • Article influence
    2.36
  • Website
    Journal of Cognitive Neuroscience website
  • Other titles
    Journal of cognitive neuroscience (Online), Journal of cognitive neuroscience
  • ISSN
    0898-929X
  • OCLC
    38911348
  • Material type
    Document, Periodical, Internet resource
  • Document type
    Internet Resource, Computer File, Journal / Magazine / Newspaper

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Sound waves emitted by two or more simultaneous sources reach the ear as one complex waveform. Auditory scene analysis involves parsing a complex waveform into separate perceptual representations of the sound sources (Bregman, A. S. Auditory scene analysis: The perceptual organization of sounds. London: MIT Press, 1990). Harmonicity provides an important cue for auditory scene analysis. Normally, harmonics at integer multiples of a fundamental frequency are perceived as one sound with a pitch corresponding to the fundamental frequency. However, when one harmonic in such a complex, pitch-evoking sound is sufficiently mistuned, that harmonic emerges from the complex tone and is perceived as a separate auditory object. Previous work has shown that the percept of two objects is indexed in both children and adults by the object-related negativity component of the ERP derived from EEG recordings (Alain et al., 2001). Here we examine the emergence of object-related responses to an 8% harmonic mistuning in infants between 2 and 12 months of age. Two-month-old infants showed no significant object-related response. However, in 4- to 12-month-old infants, a significant frontally positive component was present, and by 8-12 months, a significant frontocentral object-related negativity was present, similar to that seen in older children and adults. This is in accordance with previous research demonstrating that infants younger than 4 months of age do not integrate harmonic information to perceive pitch when the fundamental is missing (He, C., Hotson, L., & Trainor, L. J. Maturation of cortical mismatch mismatch responses to occasional pitch change in early infancy: Effects of presentation rate and magnitude of change. Neuropsychologia, 47, 2009, 218-229). The results indicate that the ability to use harmonic information to segregate simultaneous sounds emerges at the cortical level between 2 and 4 months of age.
    Journal of Cognitive Neuroscience 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: During active scene perception, our eyes move from one location to another via saccadic eye movements, with the eyes fixating objects and scene elements for varying amounts of time. Much of the variability in fixation duration is accounted for by attentional, perceptual, and cognitive processes associated with scene analysis and comprehension. For this reason, current theories of active scene viewing attempt to account for the influence of attention and cognition on fixation duration. Yet almost nothing is known about the neurocognitive systems associated with variation in fixation duration during scene viewing. We addressed this topic using fixation-related fMRI, which involves coregistering high-resolution eye tracking and MR scanning to conduct event-related fMRI analysis based on characteristics of eye movements. We observed that activation in visual and prefrontal executive control areas was positively correlated with fixation duration, whereas activation in ventral areas associated with scene encoding and medial superior frontal and paracentral regions associated with changing action plans was negatively correlated with fixation duration. The results suggest that fixation duration in scene viewing is controlled by cognitive processes associated with real-time scene analysis interacting with motor planning, consistent with current computational models of active vision for scene perception.
    Journal of Cognitive Neuroscience 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Although it is well established that stress can disrupt complex cognitive functions, relatively little is known about how it influences visual processing, especially in terms of visual selective attention. In the current study, we used highly aversive images, taken from the International Affective Picture System, to induce acute, low-intensity stress while participants performed a visual discrimination task. Consistent with prior research, we found that anticipation of aversive stimuli increased overall amplitude of the N170, suggesting an increase in early sensory gain. More importantly, we found that stress disrupted visual selective attention. While in no-stress blocks, the amplitude of the face-sensitive N170 was higher when participants attended to faces rather than scenes in face-scene overlay images; this effect was absent under stress. This was because of an increase in N170 amplitude in the scene-attend condition under stress. We interpret these findings as suggesting that even low-intensity acute stress can impair participants' ability to filter out task-irrelevant information. We discuss our findings in relation to how even brief exposure to low-intensity stress may adversely impact both healthy and clinical populations.
    Journal of Cognitive Neuroscience 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A great deal of prior research has examined the relation between estimates of working memory and cognitive abilities. Yet, the neural mechanisms that account for these relations are still not very well understood. The current study explored whether individual differences in working memory delay activity would be a significant predictor of cognitive abilities. A large number of participants performed multiple measures of capacity, attention control, long-term memory, working memory span, and fluid intelligence, and latent variable analyses were used to examine the data. During two working memory change detection tasks, we acquired EEG data and examined the contralateral delay activity. The results demonstrated that the contralateral delay activity was significantly related to cognitive abilities, and importantly these relations were because of individual differences in both capacity and attention control. These results suggest that individual differences in working memory delay activity predict individual differences in a broad range of cognitive abilities, and this is because of both differences in the number of items that can be maintained and the ability to control access to working memory.
    Journal of Cognitive Neuroscience 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Evidence implicates ventral parieto-premotor cortices in representing the goal of grasping independent of the movements or effectors involved [Umilta, M. A., Escola, L., Intskirveli, I., Grammont, F., Rochat, M., Caruana, F., et al. When pliers become fingers in the monkey motor system. Proceedings of the National Academy of Sciences, U.S.A., 105, 2209-2213, 2008; Tunik, E., Frey, S. H., & Grafton, S. T. Virtual lesions of the anterior intraparietal area disrupt goal-dependent on-line adjustments of grasp. Nature Neuroscience, 8, 505-511, 2005]. Modern technologies that enable arbitrary causal relationships between hand movements and tool actions provide a strong test of this hypothesis. We capitalized on this unique opportunity by recording activity with fMRI during tasks in which healthy adults performed goal-directed reach and grasp actions manually or by depressing buttons to initiate these same behaviors in a remotely located robotic arm (arbitrary causal relationship). As shown previously [Binkofski, F., Dohle, C., Posse, S., Stephan, K. M., Hefter, H., Seitz, R. J., et al. Human anterior intraparietal area subserves prehension: A combined lesion and functional MRI activation study. Neurology, 50, 1253-1259, 1998], we detected greater activity in the vicinity of the anterior intraparietal sulcus (aIPS) during manual grasp versus reach. In contrast to prior studies involving tools controlled by nonarbitrarily related hand movements [Gallivan, J. P., McLean, D. A., Valyear, K. F., & Culham, J. C. Decoding the neural mechanisms of human tool use. Elife, 2, e00425, 2013; Jacobs, S., Danielmeier, C., & Frey, S. H. Human anterior intraparietal and ventral premotor cortices support representations of grasping with the hand or a novel tool. Journal of Cognitive Neuroscience, 22, 2594-2608, 2010], however, responses within the aIPS and premotor cortex exhibited no evidence of selectivity for grasp when participants employed the robot. Instead, these regions showed comparable increases in activity during both the reach and grasp conditions. Despite equivalent sensorimotor demands, the right cerebellar hemisphere displayed greater activity when participants initiated the robot's actions versus when they pressed a button known to be nonfunctional and watched the very same actions undertaken autonomously. This supports the hypothesis that the cerebellum predicts the forthcoming sensory consequences of volitional actions [Blakemore, S. J., Frith, C. D., & Wolpert, D. M. The cerebellum is involved in predicting the sensory consequences of action. NeuroReport, 12, 1879-1884, 2001]. We conclude that grasp-selective responses in the human aIPS and premotor cortex depend on the existence of nonarbitrary causal relationships between hand movements and end-effector actions.
    Journal of Cognitive Neuroscience 12/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: A central concern in the study of learning and decision-making is the identification of neural signals associated with the values of choice alternatives. An important factor in understanding the neural correlates of value is the representation of the object itself, separate from the act of choosing. Is it the case that the representation of an object within visual areas will change if it is associated with a particular value? We used fMRI adaptation to measure the neural similarity of a set of novel objects before and after participants learned to associate monetary values with the objects. We used a range of both positive and negative values to allow us to distinguish effects of behavioral salience (i.e., large vs. small values) from effects of valence (i.e., positive vs. negative values). During the scanning session, participants made a perceptual judgment unrelated to value. Crucially, the similarity of the visual features of any pair of objects did not predict the similarity of their value, so we could distinguish adaptation effects because of each dimension of similarity. Within early visual areas, we found that value similarity modulated the neural response to the objects after training. These results show that an abstract dimension, in this case, monetary value, modulates neural response to an object in visual areas of the brain even when attention is diverted.
    Journal of Cognitive Neuroscience 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Via mental simulation, imagined events faithfully reproduce the neural and behavioral activities that accompany their actual occurrence. However, little is known about how fundamental characteristics of mental imagery-notably perspectives of self-shape neurocognitive processes. To address this issue, we used fMRI to explore the impact that vantage point exerts on the neural and behavioral correlates of imaginary sensory experiences (i.e., pain). Participants imagined painful scenarios from three distinct visual perspectives: first-person self (1PS), third-person self (3PS), and third-person other (3PO). Corroborating increased ratings of pain and embodiment, 1PS (cf. 3PS) simulations elicited greater activity in the right anterior insula, a brain area that supports interoceptive and emotional awareness. Additionally, 1PS simulations evoked greater activity in brain areas associated with visual imagery and the sense of body ownership. Interestingly, no differences were observed between 3PS and 3PO imagery. Taken together, these findings reveal the neural and behavioral correlates of visual perspective during mental simulation.
    Journal of Cognitive Neuroscience 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neurochemical systems are well studied in animal learning; however, ethical issues limit methodologies to explore these systems in humans. Pupillometry provides a glimpse into the brain's neurochemical systems, where pupil dynamics in monkeys have been linked with locus coeruleus activity, which releases norepinephrine (NE) throughout the brain. Here, we use pupil dynamics as a surrogate measure of neurochemical activity to explore the hypothesis that NE is involved in modulating memory encoding. We examine this using a task-irrelevant learning paradigm in which learning is boosted for stimuli temporally paired with task targets. We show that participants better recognize images that are paired with task targets than distractors and, in correspondence, that pupil size changes more for target-paired than distractor-paired images. To further investigate the hypothesis that NE nonspecifically guides learning for stimuli that are present with its release, a second procedure was used that employed an unexpected sound to activate the LC-NE system and induce pupil-size changes; results indicated a corresponding increase in memorization of images paired with the unexpected sounds. Together, these results suggest a relationship between the LC-NE system, pupil-size changes, and human memory encoding.
    Journal of Cognitive Neuroscience 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Functional imaging studies in human and nonhuman primates have demonstrated regions in the brain that show category selectivity for faces or (headless) bodies. Recent fMRI-guided single unit studies of the macaque face category-selective regions have increased our understanding of the response properties of single neurons in these face patches. However, much less is known about the response properties of neurons in the fMRI-defined body category-selective regions ("body patches"). Recently, we reported that the majority of single neurons in one fMRI-defined body patch, the mid-STS body patch, responded greater to bodies compared with other objects. Here we assessed the tolerance of these neurons' responses and stimulus preference for shape-preserving image transformations. After mapping the receptive field of the single neurons, we found that their stimulus preference showed a high degree of tolerance for changes in the position and size of the stimulus. However, their response strongly depended on the in-plane orientation of a body. The selectivity of most neurons was, to a large degree, preserved when silhouettes were presented instead of the original textured and shaded images, suggesting that mainly shape-based features are driving these neurons. In a human psychophysical study, we showed that the information present in silhouettes is largely sufficient for body versus nonbody categorization. These data suggest that mid-STS body patch neurons respond predominantly to oriented shape features that are prevalent in images of bodies. Their responses can inform position- and retinal size-invariant body categorization and discrimination based on shape.
    Journal of Cognitive Neuroscience 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is not clear how the engagement of motor mnemonic processes is expressed in online brain activity. We scanned participants, using fMRI, during the paced performance of a finger-to-thumb opposition sequence (FOS), intensively trained a day earlier (T-FOS), and a similarly constructed, but novel, untrained FOS (U-FOS). Both movement sequences were performed in pairs of blocks separated by a brief rest interval (30 sec). We have recently shown that in the primary motor cortex (M1) motor memory was not expressed in the average signal intensity but rather in the across-block signal modulations, that is, when comparing the first to the second performance block across the brief rest interval. Here, using an M1 seed, we show that for the T-FOS, the M1-striatum functional connectivity decreased across blocks; however, for the U-FOS, connectivity within the M1 and between M1 and striatum increased. In addition, in M1, the pattern of within-block signal change, but not signal variability per se, reliably differentiated the two sequences. Only for the U-FOS and only within the first blocks in each pair, the signal significantly decreased. No such modulation was found within the second corresponding blocks following the brief rest interval in either FOS. We propose that a network including M1 and striatum underlies online motor working memory. This network may promote a transient integrated representation of a new movement sequence and readily retrieves a previously established movement sequence representation. Averaging over single events or blocks may not capture the dynamics of motor representations that occur over multiple timescales.
    Journal of Cognitive Neuroscience 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Does the presence of irrelevant neuroscience information make explanations of psychological phenomena more appealing? Do fMRI pictures further increase that allure? To help answer these questions, 385 college students in four experiments read brief descriptions of psychological phenomena, each one accompanied by an explanation of varying quality (good vs. circular) and followed by superfluous information of various types. Ancillary measures assessed participants' analytical thinking, beliefs on dualism and free will, and admiration for different sciences. In Experiment 1, superfluous neuroscience information increased the judged quality of the argument for both good and bad explanations, whereas accompanying fMRI pictures had no impact above and beyond the neuroscience text, suggesting a bias that is conceptual rather than pictorial. Superfluous neuroscience information was more alluring than social science information (Experiment 2) and more alluring than information from prestigious "hard sciences" (Experiments 3 and 4). Analytical thinking did not protect against the neuroscience bias, nor did a belief in dualism or free will. We conclude that the "allure of neuroscience" bias is conceptual, specific to neuroscience, and not easily accounted for by the prestige of the discipline. It may stem from the lay belief that the brain is the best explanans for mental phenomena.
    Journal of Cognitive Neuroscience 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Processing spatial configuration is a fundamental requirement for object recognition. Using fMRI, the neural basis underlying this ability was examined while human participants viewed possible and visually similar, but spatially impossible, objects presented for either long or short exposure duration. Response profiles in object-selective cortical regions exhibited sensitivity to object possibility, but only for the long exposure duration. Contrary, functional connectivity, indexed by the pairwise correlations between activation profiles across ROIs, revealed sensitivity to possibility, evident in enhanced correlations for impossible compared with possible objects. Such sensitivity was found even following a brief exposure duration, which allowed only minimal awareness of possibility. Importantly, this sensitivity was correlated with participants' general spatial ability as assessed by an independent neuropsychological test. These results suggest that the visual system is highly susceptible to objects' 3-D structural information even with minimal perceptual awareness. Such sensitivity is captured at the level of functional connectivity between object-selective regions, rather than the absolute level of within-region activity, implicating the role of interregional synchronization in the representation of objects' 3-D structure.
    Journal of Cognitive Neuroscience 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Visual search-finding a target element among similar-looking distractors-is one of the prevailing experimental methods to study attention. Current theories of visual search postulate an early stage of feature extraction interacting with an attentional process that selects candidate targets for further analysis; in difficult search situations, this selection is iterated until the target is found. Although such theories predict an intrinsic periodicity in the neuronal substrates of attentional search, this prediction has not been extensively tested in human electrophysiology. Here, using EEG and TMS, we study attentional periodicities in visual search. EEG measurements indicated that successful and unsuccessful search trials were associated with different amounts of poststimulus oscillatory amplitude and phase-locking at ∼6 Hz and opposite prestimulus oscillatory phase at ∼6 Hz. A trial-by-trial comparison of pre- and poststimulus ∼6 Hz EEG phases revealed that the functional interplay between prestimulus brain states, poststimulus oscillations, and successful search performance was mediated by a partial phase reset of ongoing oscillations. Independently, TMS applied over occipital cortex at various intervals after search onset demonstrated a periodic pattern of interference at ∼6 Hz. The converging evidence from independent TMS and EEG measurements demonstrates that attentional search is modulated periodically by brain oscillations. This periodicity is naturally compatible with a sequential exploration by attention, although a parallel but rhythmically modulated attention spotlight cannot be entirely ruled out.
    Journal of Cognitive Neuroscience 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Memory can often be triggered by retrieval cues that are quite different from the originally encoded events, but how different memory processes respond to variations in cue-target similarity is poorly understood. We begin by presenting simulations using a neurocomputational model of recognition memory (i.e., the complementary learning systems model), which proposes that the hippocampus supports recollection of associative information whereas the surrounding cortex supports assessments of item familiarity. The simulations showed that increases in the similarity between retrieval cues and learned items led to relatively linear increases in a cortex-based memory signal but led to steeper and more thresholded increases in the hippocampal signal. We then tested the predictions of the model by examining the effects of varying cue-target similarity in two recognition memory experiments in which participants studied a list of computer-generated faces and then, at test, gave confidence and remember/know responses to morphed faces. In both experiments, as cue-target similarity was increased, familiarity-based recognition increased in a gradual and relatively linear fashion, whereas recollection showed significantly steeper gradients. The results show that recollection and familiarity exhibit distinct similarity functions in recognition memory that correspond with predicted retrieval dynamics of the hippocampus and cortex, respectively.
    Journal of Cognitive Neuroscience 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: It is commonly believed that, in right-handed individuals, words and faces are processed by distinct neural systems: one in the left hemisphere (LH) for words and the other in the right hemisphere (RH) for faces. Emerging evidence suggests, however, that hemispheric selectivity for words and for faces may not be independent of each other. One recent account suggests that words become lateralized to the LH to interact more effectively with language regions, and subsequently, as a result of competition with words for representational space, faces become lateralized to the RH. On this interactive account, left-handed individuals, who as a group show greater variability with respect to hemispheric language dominance, might be expected to show greater variability in their degree of RH lateralization of faces as well. The current study uses behavioral measures and ERPs to compare the hemispheric specialization for both words and faces in right- and left-handed adult individuals. Although both right- and left-handed groups demonstrated an LH over RH superiority in discrimination accuracy for words, only the right-handed group demonstrated an RH over LH advantage in discrimination accuracy for faces. Consistent with this, increased right-handedness was related to an increase in RH superiority for face processing, as measured by the strength of the N170 ERP component. Interestingly, the degree of RH behavioral superiority for face processing and the amplitude of the RH N170 for faces could be predicted by the magnitude of the N170 ERP response to words in the LH. These results are discussed in terms of a theoretical account in which the typical RH face lateralization fails to emerge in individuals with atypical language lateralization because of weakened competition from the LH representation of words.
    Journal of Cognitive Neuroscience 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Confidence judgments are often severely distorted: People may feel underconfident when responding correctly or, conversely, overconfident in erred responses. Our aim here was to identify the timing of brain processes that lead to variations in objective performance and subjective judgments of confidence. We capitalized on the Partial Report Paradigm [Sperling, G. The information available in brief visual presentations. Psychological Monographs: General and Applied, 74, 1, 1960], which allowed us to separate experimentally the moment of encoding of information from that of its retrieval [Zylberberg, A., Dehaene, S., Mindlin, G. B., & Sigman, M. Neurophysiological bases of exponential sensory decay and top-down memory retrieval: A model. Frontiers in Computational Neuroscience, 3, 2009]. We observed that the level of subjective confidence is indexed by two very specific evoked potential at latencies of about 400 and 600 msec during the retrieval stage and by a stationary measure of intensity of the alpha band during the encoding period. When factoring out the effect of confidence, objective performance shows a weak effect during the encoding and retrieval periods. These results have relevant implications for theories of decision-making and confidence, suggesting that confidence is not constructed online as evidence is accumulated toward a decision. Instead, confidence attributions are more consistent with a retrospective mechanism that monitors the entire decision process.
    Journal of Cognitive Neuroscience 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Musicians have enhanced auditory processing abilities. In some studies, these abilities are paralleled by an improved understanding of speech in noisy environments, because in part of more robust encoding of speech signals in noise at the level of the brainstem. Little is known about the impact of musicianship on attention-dependent cortical activity related to lexical access during a speech-in-noise task. To address this issue, we presented musicians and nonmusicians with single words mixed with three levels of background noise, across two conditions while monitoring electrical brain activity. In the active condition, listeners repeated the words aloud, and in the passive condition, they ignored the words and watched a silent film. When background noise was most intense, musicians repeated more words correctly compared with nonmusicians. Auditory evoked responses were attenuated and delayed with the addition of background noise. In musicians, P1 amplitude was marginally enhanced during active listening and was related to task performance in the most difficult listening condition. By comparing ERPs from the active and passive conditions, we isolated an N400 related to lexical access. The amplitude of the N400 was not influenced by the level of background noise in musicians, whereas N400 amplitude increased with the level of background noise in nonmusicians. In nonmusicians, the increase in N400 amplitude was related to a reduction in task performance. In musicians only, there was a rightward shift of the sources contributing to the N400 as the level of background noise increased. This pattern of results supports the hypothesis that encoding of speech in noise is more robust in musicians and suggests that this facilitates lexical access. Moreover, the shift in sources suggests that musicians, to a greater extent than nonmusicians, may increasingly rely on acoustic cues to understand speech in noise.
    Journal of Cognitive Neuroscience 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: We manipulated the degree of structural similarity between objects that had to be matched either according to whether they represented the same object (perceptual matching) or belonged to the same category (conceptual matching). Behaviorally, performance improved as a linear function of increased structural similarity during conceptual matching but deteriorated as a linear function of increased structural similarity during perceptual matching. These effects were mirrored in fMRI recordings where activation in several ventral posterior areas exhibited a similar interaction between match type and structural similarity. Our findings provide direct support for the notion that structural similarity exerts opposing effects on classification depending on whether objects are to be perceptually differentiated or categorized-a notion that has been based on rather circumstantial evidence. In particular, the finding that structural similarity plays a major role in categorization of instances according to taxonomy challenges the view that the organization of superordinate categories is not driven by shared structural features.
    Journal of Cognitive Neuroscience 11/2014;