Genes & Development (GENE DEV )

Publisher: Genetical Society (Great Britain), Cold Spring Harbor Laboratory Press

Description

Genes & Development publishes research papers of general interest and biological significance in molecular biology, molecular genetics, and developmental biology.

  • Impact factor
    12.44
    Hide impact factor history
     
    Impact factor
  • 5-year impact
    12.74
  • Cited half-life
    8.90
  • Immediacy index
    2.15
  • Eigenfactor
    0.17
  • Article influence
    7.15
  • Website
    Genes & Development website
  • Other titles
    Genes & development, Genes and development
  • ISSN
    0890-9369
  • OCLC
    14470918
  • Material type
    Periodical, Internet resource
  • Document type
    Journal / Magazine / Newspaper, Internet Resource

Publisher details

Cold Spring Harbor Laboratory Press

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author can archive a post-print version
  • Conditions
    • Author's pre-print on preprint server
    • Author's pre-print must be updated with citation, DOI and link to article upon publication
    • Publisher's version/PDF may be used after 6 months
    • Publisher's version/PDF and Author's post-print on author's personal website, institutional repository, funder's designated repository
    • Authors retain copyright
    • Content automatically sent to PubMed Central after 6 months
    • Publisher copyright and source must be acknowledged
    • Publisher last contacted on 15/07/2013
  • Classification
    ​ green

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: A hallmark of the inflammatory response to pathogen exposure is the production of tumor necrosis factor (TNF) that coordinates innate and adaptive immune responses by functioning in an autocrine or paracrine manner. Numerous molecular mechanisms contributing to TNF production have been identified, but how they function together in macrophages remains unclear. Here, we pursued an iterative systems biology approach to develop a quantitative understanding of the regulatory modules that control TNF mRNA synthesis and processing, mRNA half-life and translation, and protein processing and secretion. By linking the resulting model of TNF production to models of the TLR-, the TNFR-, and the NFκB signaling modules, we were able to study TNF’s functions during the inflammatory response to diverse TLR agonists. Contrary to expectation, we predicted and then experimentally confirmed that in response to lipopolysaccaride, TNF does not have an autocrine function in amplifying the NFκB response, although it plays a potent paracrine role in neighboring cells. However, in response to CpG DNA, autocrine TNF extends the duration of NFκB activity and shapes CpG-induced gene expression programs. Our systems biology approach revealed that network dynamics of MyD88 and TRIF signaling and of cytokine production and response govern the stimulus-specific autocrine and paracrine functions of TNF.
    Genes & Development 10/2014; 28(19):2120-2133.
  • [Show abstract] [Hide abstract]
    ABSTRACT: BRCA1 is a breast and ovarian tumor suppressor. Given its numerous incompletely understood functions and the possibility that more exist, we performed complementary systematic screens in search of new BRCA1 protein-interacting partners. New BRCA1 functions and/or a better understanding of existing ones were sought. Among the new interacting proteins identified, genetic interactions were detected between BRCA1 and four of the interactors: TONSL, SETX, TCEANC, and TCEA2. Genetic interactions were also detected between BRCA1 and certain interactors of TONSL, including both members of the FACT complex. From these results, a new BRCA1 function in the response to transcription-associated DNA damage was detected. Specifically, new roles for BRCA1 in the restart of transcription after UV damage and in preventing or repairing damage caused by stabilized R loops were identified. These roles are likely carried out together with some of the newly identified interactors. This new function may be important in BRCA1 tumor suppression, since the expression of several interactors, including some of the above-noted transcription proteins, is repeatedly aberrant in both breast and ovarian cancers.
    Genes & Development 09/2014; 28(17):1957-75.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ubiquitin proteasome pathway is critical in restraining the activities of the p53 tumor suppressor. Numerous E3 and E4 ligases regulate p53 levels. Additionally, deubquitinating enzymes that modify p53 directly or indirectly also impact p53 function. When alterations of these proteins result in increased p53 activity, cells arrest in the cell cycle, senesce, or apoptose. On the other hand, alterations that result in decreased p53 levels yield tumor-prone phenotypes. This review focuses on the physiological relevance of these important regulators of p53 and their therapeutic implications.
    Genes & Development 08/2014; 28(16):1739-51.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dynamic reversible methylation of lysine residues on histone proteins is central to chromatin biology. Key components are demethylase enzymes, which remove methyl moieties from lysine residues. KDM2A, a member of the Jumonji C domain-containing histone lysine demethylase family, specifically targets lower methylation states of H3K36. Here, structural studies reveal that H3K36 specificity for KDM2A is mediated by the U-shaped threading of the H3K36 peptide through a catalytic groove within KDM2A. The side chain of methylated K36 inserts into the catalytic pocket occupied by Ni(2+) and cofactor, where it is positioned and oriented for demethylation. Key residues contributing to K36me specificity on histone H3 are G33 and G34 (positioned within a narrow channel), P38 (a turn residue), and Y41 (inserts into its own pocket). Given that KDM2A was found to also bind the H3K36me3 peptide, we postulate that steric constraints could prevent α-ketoglutarate from undergoing an "off-line"-to-"in-line" transition necessary for the demethylation reaction. Furthermore, structure-guided substitutions of residues in the KDM2A catalytic pocket abrogate KDM2A-mediated functions important for suppression of cancer cell phenotypes. Together, our results deduce insights into the molecular basis underlying KDM2A regulation of the biologically important methylated H3K36 mark.
    Genes & Development 08/2014; 28(16):1758-71.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Histone lysine methylation and demethylation regulate histone methylation dynamics, which impacts chromatin structure and function. To read and erase the methylated histone residues, lysine demethylases must specifically recognize the histone sequences and methylated sites and discriminate the degree of these methylations. In this issue of Genes & Development, Cheng and colleagues (pp. 1758-1771) determine a crystal structure of histone lysine demethylase KDM2A that specifically targets lower degrees of H3K36 methylation. The results reveal the structural basis for H3K36 substrate specificity and suggest mechanisms of Lys36 demethylation. This KDM2A-H3K36 complex structure, coupled with functional studies, provides needed insight into the process and regulation of histone demethylation.
    Genes & Development 08/2014; 28(16):1735-8.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Telomere length homeostasis is essential for the long-term survival of stem cells, and its set point determines the proliferative capacity of differentiated cell lineages by restricting the reservoir of telomeric repeats. Knockdown and overexpression studies in human tumor cells showed that the shelterin subunit TPP1 recruits telomerase to telomeres through a region termed the TEL patch. However, these studies do not resolve whether the TPP1 TEL patch is the only mechanism for telomerase recruitment and whether telomerase regulation studied in tumor cells is representative of nontransformed cells such as stem cells. Using genome engineering of human embryonic stem cells, which have physiological telomere length homeostasis, we establish that the TPP1 TEL patch is genetically essential for telomere elongation and thus long-term cell viability. Furthermore, genetic bypass, protein fusion, and intragenic complementation assays define two distinct additional mechanisms of TPP1 involvement in telomerase action at telomeres. We demonstrate that TPP1 provides an essential step of telomerase activation as well as feedback regulation of telomerase by telomere length, which is necessary to determine the appropriate telomere length set point in human embryonic stem cells. These studies reveal and resolve multiple TPP1 roles in telomere elongation and stem cell telomere length homeostasis.
    Genes & Development 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Tissues may adopt diverse strategies to establish specific transcriptional programs in daughter lineages. In intestinal crypts, enhancers for genes expressed in both major cell types appear broadly permissive in stem and specified progenitor cells. In blood, another self-renewing tissue, it is unclear when chromatin becomes permissive for transcription of genes expressed in distinct terminal lineages. Using chromatin immunoprecipitation (ChIP) combined with deep sequencing (ChIP-seq) to profile activating histone marks, we studied enhancer dynamics in primary mouse blood stem, progenitor, and specified cells. Stem and multipotent progenitor cells show scant H3K4me2 marking at enhancers bound by specific transcription factors in their committed progeny. Rather, enhancers are modulated dynamically and serially, with substantial loss and gain of H3K4me2, at each cellular transition. Quantitative analysis of these dynamics accurately modeled hematopoiesis according to Waddington's notion of epigenotypes. Delineation of enhancers in terminal blood lineages coincides with cell specification, and enhancers active in single lineages show well-positioned H3K4me2- and H3K27ac-marked nucleosomes and DNaseI hypersensitivity in other cell types, revealing limited lineage fidelity. These findings demonstrate that enhancer chronology in blood cells differs markedly from that in intestinal crypts. Chromatin dynamics in hematopoiesis provide a useful foundation to consider classical observations such as cellular reprogramming and multilineage locus priming.
    Genes & Development 08/2014; 28(16):1827-39.
  • [Show abstract] [Hide abstract]
    ABSTRACT: To develop stem cell therapy for small intestinal (SI) diseases, it is essential to determine whether SI stem cells in culture retain their tissue regeneration capabilities. By using a heterotopic transplantation approach, we show that cultured murine SI epithelial organoids are able to reconstitute self-renewing epithelia in the colon. When stably integrated, the SI-derived grafts show many features unique only to the SI but distinct from the colonic epithelium. Our study provides evidence that cultured adult SI stem cells could be a source for cell therapy of intestinal diseases, maintaining their identity along the gastrointestinal tract through an epithelium-intrinsic mechanism.
    Genes & Development 08/2014; 28(16):1752-7.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Small noncoding RNAs that associate with Piwi proteins, called piRNAs, serve as guides for repression of diverse transposable elements in germ cells of metazoa. In Drosophila, the genomic regions that give rise to piRNAs, the so-called piRNA clusters, are transcribed to generate long precursor molecules that are processed into mature piRNAs. How genomic regions that give rise to piRNA precursor transcripts are differentiated from the rest of the genome and how these transcripts are specifically channeled into the piRNA biogenesis pathway are not known. We found that transgenerationally inherited piRNAs provide the critical trigger for piRNA production from homologous genomic regions in the next generation by two different mechanisms. First, inherited piRNAs enhance processing of homologous transcripts into mature piRNAs by initiating the ping-pong cycle in the cytoplasm. Second, inherited piRNAs induce installment of the histone 3 Lys9 trimethylation (H3K9me3) mark on genomic piRNA cluster sequences. The heterochromatin protein 1 (HP1) homolog Rhino binds to the H3K9me3 mark through its chromodomain and is enriched over piRNA clusters. Rhino recruits the piRNA biogenesis factor Cutoff to piRNA clusters and is required for efficient transcription of piRNA precursors. We propose that transgenerationally inherited piRNAs act as an epigenetic memory for identification of substrates for piRNA biogenesis on two levels: by inducing a permissive chromatin environment for piRNA precursor synthesis and by enhancing processing of these precursors.
    Genes & Development 08/2014; 28(15):1667-80.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sequence variation in tRNA genes influences the structure, modification, and stability of tRNA; affects translation fidelity; impacts the activity of numerous isodecoders in metazoans; and leads to human diseases. To comprehensively define the effects of sequence variation on tRNA function, we developed a high-throughput in vivo screen to quantify the activity of a model tRNA, the nonsense suppressor SUP4oc of Saccharomyces cerevisiae. Using a highly sensitive fluorescent reporter gene with an ochre mutation, fluorescence-activated cell sorting of a library of SUP4oc mutant yeast strains, and deep sequencing, we scored 25,491 variants. Unexpectedly, SUP4oc tolerates numerous sequence variations, accommodates slippage in tertiary and secondary interactions, and exhibits genetic interactions that suggest an alternative functional tRNA conformation. Furthermore, we used this methodology to define tRNA variants subject to rapid tRNA decay (RTD). Even though RTD normally degrades tRNAs with exposed 5' ends, mutations that sensitize SUP4oc to RTD were found to be located throughout the sequence, including the anti-codon stem. Thus, the integrity of the entire tRNA molecule is under surveillance by cellular quality control machinery. This approach to assess activity at high throughput is widely applicable to many problems in tRNA biology.
    Genes & Development 08/2014; 28(15):1721-32.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In enteric bacteria, the transcription factor σ(E) maintains membrane homeostasis by inducing synthesis of proteins involved in membrane repair and two small regulatory RNAs (sRNAs) that down-regulate synthesis of abundant membrane porins. Here, we describe the discovery of a third σ(E)-dependent sRNA, MicL (mRNA-interfering complementary RNA regulator of Lpp), transcribed from a promoter located within the coding sequence of the cutC gene. MicL is synthesized as a 308-nucleotide (nt) primary transcript that is processed to an 80-nt form. Both forms possess features typical of Hfq-binding sRNAs but surprisingly target only a single mRNA, which encodes the outer membrane lipoprotein Lpp, the most abundant protein of the cell. We show that the copper sensitivity phenotype previously ascribed to inactivation of the cutC gene is actually derived from the loss of MicL and elevated Lpp levels. This observation raises the possibility that other phenotypes currently attributed to protein defects are due to deficiencies in unappreciated regulatory RNAs. We also report that σ(E) activity is sensitive to Lpp abundance and that MicL and Lpp comprise a new σ(E) regulatory loop that opposes membrane stress. Together MicA, RybB, and MicL allow σ(E) to repress the synthesis of all abundant outer membrane proteins in response to stress.
    Genes & Development 07/2014; 28(14):1620-34.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cytoplasmic changes in polyA tail length is a key mechanism of translational control and is implicated in germline development, synaptic plasticity, cellular proliferation, senescence, and cancer progression. The presence of a U-rich cytoplasmic polyadenylation element (CPE) in the 3' untranslated regions (UTRs) of the responding mRNAs gives them the selectivity to be regulated by the CPE-binding (CPEB) family of proteins, which recognizes RNA via the tandem RNA recognition motifs (RRMs). Here we report the solution structures of the tandem RRMs of two human paralogs (CPEB1 and CPEB4) in their free and RNA-bound states. The structures reveal an unprecedented arrangement of RRMs in the free state that undergo an original closure motion upon RNA binding that ensures high fidelity. Structural and functional characterization of the ZZ domain (zinc-binding domain) of CPEB1 suggests a role in both protein-protein and protein-RNA interactions. Together with functional studies, the structures reveal how RNA binding by CPEB proteins leads to an optimal positioning of the N-terminal and ZZ domains at the 3' UTR, which favors the nucleation of the functional ribonucleoprotein complexes for translation regulation.
    Genes & Development 07/2014; 28(13):1498-514.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Almost half of our genome is occupied by transposable elements. Although most of them are inactive, one type of non-long terminal repeat (LTR) retrotransposon, long interspersed nuclear element 1 (LINE1), is capable of retrotransposition. Two studies in this issue, Pezic and colleagues (pp. 1410-1428) and Castro-Diaz and colleagues (pp. 1397-1409), provide novel insight into the regulation of LINE1s in human embryonic stem cells and mouse germ cells and shed new light on the conservation of complex mechanisms to ensure silencing of transposable elements in mammals.
    Genes & Development 07/2014; 28(13):1381-3.
  • [Show abstract] [Hide abstract]
    ABSTRACT: The ATR (ATM [ataxia telangiectasia-mutated]- and Rad3-related) checkpoint is a crucial DNA damage signaling pathway. While the ATR pathway is known to transmit DNA damage signals through the ATR-Chk1 kinase cascade, whether post-translational modifications other than phosphorylation are important for this pathway remains largely unknown. Here, we show that protein SUMOylation plays a key role in the ATR pathway. ATRIP, the regulatory partner of ATR, is modified by SUMO2/3 at K234 and K289. An ATRIP mutant lacking the SUMOylation sites fails to localize to DNA damage and support ATR activation efficiently. Surprisingly, the ATRIP SUMOylation mutant is compromised in the interaction with a protein group, rather than a single protein, in the ATR pathway. Multiple ATRIP-interacting proteins, including ATR, RPA70, TopBP1, and the MRE11-RAD50-NBS1 complex, exhibit reduced binding to the ATRIP SUMOylation mutant in cells and display affinity for SUMO2 chains in vitro, suggesting that they bind not only ATRIP but also SUMO. Fusion of a SUMO2 chain to the ATRIP SUMOylation mutant enhances its interaction with the protein group and partially suppresses its localization and functional defects, revealing that ATRIP SUMOylation promotes ATR activation by providing a unique type of protein glue that boosts multiple protein interactions along the ATR pathway.
    Genes & Development 07/2014; 28(13):1472-84.