Tree Physiology (TREE PHYSIOL)

Publisher: Oxford University Press (OUP)

Journal description

Tree Physiology is a refereed journal distributed internationally. Articles published may deal with any aspect of tree physiology, including growth, morphogenesis, photosynthesis, nutrition, pathology, reproduction, evolution, environmental adaptation, symbioses, heredity, metabolism, molecular biology, and the relation between structure and function. Also published are articles dealing with physiological aspects of biotechnology, environmental management and the economic use of trees.

Current impact factor: 3.66

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 3.655
2013 Impact Factor 3.405
2012 Impact Factor 2.853
2011 Impact Factor 2.876
2010 Impact Factor 2.403
2009 Impact Factor 2.292
2008 Impact Factor 2.283
2007 Impact Factor 2.141
2006 Impact Factor 2.297
2005 Impact Factor 2.101
2004 Impact Factor 2.462
2003 Impact Factor 2.087
2002 Impact Factor 2.152
2001 Impact Factor 2.309
2000 Impact Factor 2.052
1999 Impact Factor 2.042
1998 Impact Factor 1.813
1997 Impact Factor 1.64
1996 Impact Factor 1.74
1995 Impact Factor 1.299
1994 Impact Factor 1.03
1993 Impact Factor 1.101
1992 Impact Factor 1.124

Impact factor over time

Impact factor

Additional details

5-year impact 3.79
Cited half-life 9.30
Immediacy index 0.69
Eigenfactor 0.01
Article influence 1.07
Website Tree Physiology website
Other titles Tree physiology
ISSN 0829-318X
OCLC 13989514
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

Oxford University Press (OUP)

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Pre-print can only be posted prior to acceptance
    • Pre-print must be accompanied by set statement (see link)
    • Pre-print must not be replaced with post-print, instead a link to published version with amended set statement should be made
    • Pre-print on author's personal website, employer website, free public server or pre-prints in subject area
    • Post-print in Institutional repositories or Central repositories
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany archived copy (see policy)
    • Eligible authors may deposit in OpenDepot
    • The publisher will deposit in PubMed Central on behalf of NIH authors
    • Publisher last contacted on 19/02/2015
    • This policy is an exception to the default policies of 'Oxford University Press (OUP)'
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: To recover verticality after disturbance, angiosperm trees produce 'tension wood' allowing them to bend actively. The driving force of the tension has been shown to take place in the G-layer, a specific unlignified layer of the cell wall observed in most temperate species. However, in tropical rain forests, the G-layer is often absent and the mechanism generating the forces to reorient trees remains unclear. A study was carried out on tilted seedlings, saplings and adult Simarouba amara Aubl. trees-a species known to not produce a G-layer. Microscopic observations were done on sections of normal and tension wood after staining or observed under UV light to assess the presence/absence of lignin. We showed that S. amara produces a cell-wall layer with all of the characteristics typical of G-layers, but that this G-layer can be observed only as a temporary stage of the cell-wall development because it is masked by a late lignification. Being thin and lignified, tension wood fibres cannot be distinguished from normal wood fibres in the mature wood of adult trees. These observations indicate that the mechanism generating the high tensile stress in tension wood is likely to be the same as that in species with a typical G-layer and also in species where the G-layer cannot be observed in mature cells.
    Tree Physiology 10/2015; DOI:10.1093/treephys/tpv082
  • [Show abstract] [Hide abstract]
    ABSTRACT: For many years, scientists have been searching for nondestructive methods for the measurement of plant root system parameters. The measurement of electrical capacitance (EC) across the root has been proposed as one such nondestructive method. This article presents a study on the determination of relationships between EC measurement and the shape and size of the electrodes immersed in medium that are used for measurement. Measurement of EC and the parameters characterizing root systems of 1-year-old seedlings of the common beech Fagus sylvatica L. was conducted under laboratory conditions. The measurements of EC were performed between seedling root systems and two different electrodes in the form of a cylinder or a rectangular plate. Statistically significant correlations were found between the capacitance and root system parameters in both the variants; however, the correlations were higher in the case of the flat rectangular plate. Correlation coefficient (r) between EC and total root length was 0.688 for cylindrical electrode and 0.802 for rectangular plate, for total root area 0.641 and 0.818, and for dry weight of root system 0.502 and 0.747. The best-fitted linear regression relationships between the EC and the measured parameters were characterized by low determination coefficients in variants with cylindrical electrodes, and higher with flat rectangular plate electrodes. The results indicated that a two-dielectric media concept is a better model than Dalton’s model when attempting to interpret the behavior of root and soil capacitance. The different electrodes probably allow root capacitance measurements to be interpreted from different aspects. However, this hypothesis requires further verification.
    Tree Physiology 09/2015; DOI:10.1093/treephys/tpv088
  • [Show abstract] [Hide abstract]
    ABSTRACT: Climate is a major selective force in nature. Exploring patterns of inter- and intraspecific genetic variation in functional traits may explain how species have evolved and may continue evolving under future climate change. Photoprotective pigments play an important role in short-term responses to climate stress in plants but knowledge of their long-term role in adaptive processes is lacking. In this study, our goal was to determine how photoprotective mechanisms, morphological traits and their plasticity have evolved in live oaks (Quercus series Virentes) in response to different climatic conditions. For this purpose, seedlings originating from 11 populations from four live oak species (Quercus virginiana, Q. geminata, Q. fusiformis and Q. oleoides) were grown under contrasting common environmental conditions of temperature (tropical vs temperate) and water availability (droughted vs well-watered). Xanthophyll cycle pigments, anthocyanin accumulation, chlorophyll fluorescence parameters and leaf anatomical traits were measured. Seedlings originating from more mesic source populations of Q. oleoides and Q. fusiformis increased the xanthophyll de-epoxidation state under water-limiting conditions and showed higher phenotypic plasticity for this trait, suggesting adaptation to local climate. Likewise, seedlings originating from warmer climates had higher anthocyanin concentration in leaves under cold winter conditions but not higher de-epoxidation state. Overall, our findings suggest that (i) climate has been a key factor in shaping species and population differences in stress tolerance for live oaks, (ii) anthocyanins are used under cold stress in species with limited freezing tolerance and (iii) xanthophyll cycle pigments are used when photoprotection under drought conditions is needed.
    Tree Physiology 05/2015; 35(5). DOI:10.1093/treephys/tpv032

  • Tree Physiology 08/2014; Journal of Aquatic Science 29(1B):223-231.