Journal of biomolecular Structure & Dynamics (J BIOMOL STRUCT DYN )

Description

The Journal of Biomolecular Structure and Dynamics cordially welcomes manuscripts from active investigators in biological structure, dynamics, interactions and expression. The Journal will cover both experimental and theoretical investigations in the area of nucleic acids, nucleotides, proteins, peptides, membranes, polysaccharides and all their components, metal complexes and model systems. The Journal publishes original articles, communications a la express and timely reviews.

Impact factor 2.98

  • Hide impact factor history
     
    Impact factor
  • 5-year impact
    1.15
  • Cited half-life
    0.00
  • Immediacy index
    0.25
  • Eigenfactor
    0.00
  • Article influence
    0.32
  • Website
    Journal of Biomolecular Structure & Dynamics website
  • Other titles
    Journal of biomolecular structure & dynamics, Journal of biomolecular structure and dynamics
  • ISSN
    0739-1102
  • OCLC
    9688706
  • Material type
    Periodical, Internet resource
  • Document type
    Journal / Magazine / Newspaper, Internet Resource

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: Benzo[a]pyrene-7,8-dione (BPQ) is formed by the activation of benzo[a]pyrene(B[a]P), which is an environmental toxic substance that is easily exposed in daily life, due to P450/epoxide hydrolase, and is a substance that induces DNA deformation by forming adducts with DNA. In this study, to investigate the form of bonding between BPQ and DNA, the structures of adducts between BPQ and 2'-deoxycytidine were examined. To examine BPQ-dC adduct conformation, geometry optimization of a total of 16 structural isomers was performed using the density functional theory method. In the structures of BPQ-dC adducts, for the cis-form, the angle between BPQ and dC is nearly perpendicular; but for the trans-form, the bending angle is small. The trans-form had a larger energy gap between ground state and excited state than the cis-form, and had a smaller HOMO-LUMO gap than the cis-form. Therefore, it was found that the trans-form absorbs stronger light and has higher reactivity than the cis-form. Molecular electrostatic potential was calculated and analyzed. The calculated ESP contour map shows the electrophilic and nucleophilic regions of the molecule.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Analysis of the macromolecular crowding effects in polymer solutions show that the excluded volume effect is not the only factor affecting the behavior of biomolecules in a crowded environment. The observed inconsistencies are commonly explained by the so-called "soft" interactions, such as electrostatic, hydrophobic, and van der Waals interactions, between the crowding agent and the protein, in addition to the hard non-specific steric interactions. We suggest that the changes in the solvent properties of aqueous media induced by the crowding agents may be the root of these "soft" interactions. To check this hypothesis, the solvatochromic comparison method was used to determine the solvent dipolarity/polarizability, hydrogen-bond donor acidity, and hydrogen-bond acceptor basicity of aqueous solutions of different polymers (Dextran, poly(ethylene glycol), Ficoll, Ucon, and polyvinylpyrrolidone) with the polymer concentration up to 40% typically used as crowding agents. Polymer-induced changes in these features were found to be polymer type and concentration specific, and, in case of polyethylene glycol, molecular mass specific. Similarly sized polymers PEG and Ucon producing different changes in the solvent properties of water in their solutions induced morphologically different α-synuclein aggregates. It is shown that the crowding effects of some polymers on protein refolding and stability reported in the literature can be quantitatively described in terms of the established solvent features of the media in these polymers solutions. These results indicate that the crowding agents do induce changes in solvent properties of aqueous media in crowded environment. Therefore, these changes should be taken into account for crowding effect analysis.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: In this work, docking tools were utilized in order to study the binding properties of more than five hundred of proline-based 2,5-diketopiperazine in the binding site of αβ-tubulin. Results revealed that 20 compounds among them showed lower binding energies in comparison with Tryprostatin-A, a well known tubulin inhibitor and therefore could be potential inhibitors of tubulin. However, the precise evaluation of binding poses represents the similar binding modes for all of these compounds and Tryprostatin-A. Finally, the best docked complex was subjected to a 25 ns molecular dynamics simulation to further validate the proposed binding mode of this compound.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Human CC-chemokine receptor 8 (CCR8) is a crucial drug target in asthma that belongs to G-protein-coupled receptor superfamily, which is characterized by seven transmembrane helices. To date, there is no X-ray crystal structure available for CCR8; this hampers active research on the target. Molecular basis of interaction mechanism of antagonist with CCR8 remains unclear. In order to provide binding site information and stable binding mode, we performed modeling, docking and molecular dynamics (MD) simulation of CCR8. Docking study of biaryl-ether-piperidine derivative (13C) was performed inside predefined CCR8 binding site to get the representative conformation of 13C. Further, MD simulations of receptor and complex (13C-CCR8) inside dipalmitoylphosphatidylcholine lipid bilayers were performed to explore the effect of lipids. Results analyses showed that the Gln91, Tyr94, Cys106, Val109, Tyr113, Cys183, Tyr184, Ser185, Lys195, Thr198, Asn199, Met202, Phe254, and Glu286 were conserved in both docking and MD simulations. This indicated possible role of these residues in CCR8 antagonism. However, experimental mutational studies on these identified residues could be effective to confirm their importance in CCR8 antagonism. Furthermore, calculated Coulombic interactions represented the crucial roles of Glu286, Lys195, and Tyr113 in CCR8 antagonism. Important residues identified in this study overlap with the previous non-peptide agonist (LMD-009) binding site. Though, the non-peptide agonist and currently studied inhibitor (13C) share common substructure, but they differ in their effects on CCR8. So, to get more insight into their agonist and antagonist effects, further side-by-side experimental studies on both agonist (LMD-009) and antagonist (13C) are suggested.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The most studied function of BRCA1 is that of tumor suppression through its role in DNA repair and transcription regulation. Germline mutations discovered in a larger cohort of patients, abrogate BRCA1 interactions with reported cellular partners, and are responsible for breast and ovarian cancer. The different functional regions of BRCA1 interact with nearly 30 different cellular partners. Thus, it becomes clinically significant to understand the detailed protein-protein interactions associated with functional regions of BRCA1. Different overlapping central domains of BRCA1 have been characterized using in silico, in vitro and biophysical approaches. To our conclusions, it has been observed that central domains of BRCA1 are intrinsically disordered and has large hydrodynamic radius with random coil like structures.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The structural change of M. tuberculosis MPT63, which is predominantly a β-sheet protein having an immunoglobulin like fold, has been investigated in the pH range 7.5-1.5 using various biophysical techniques along with low-temperature phosphorescence (LTP) spectroscopy. MPT63 contains four Tryptophan (Trp) residues at 26, 48, 82, and 129. Although circular dichroism, steady-state and time-resolved fluorescence, time-resolved anisotropy, 1-aniline-8-naphthalene sulfonic (ANS) acid binding, and analytical ultracentrifuge depict more open largely unfolded structure of MPT63 at pH 1.5 and also more accessible nature of Trp residues to neutral quencher at pH 1.5, it is, however, not possible to assign the specific Trp residue/residues being perturbed. This problem has been resolved using LTP of MPT63, which shows optically resolved four distinct (0, 0) bands corresponding to four Trp residues in the pH range 7.5-3.0. LTP at pH 1.5 clearly reveals that the solvent-exposed Trp 82 and the almost buried Trp 129 are specifically affected compared with Trp 48 and Trp 26. Lys 8 and Lys 27 are predicted to affect Trp 129. Tyrosine residues are found to be silent even at pH 1.5. This type of specific perturbation in a multi-Trp protein has not been addressed before. LTP further indicates that partially exposed Trp 48 is preferentially quenched by acrylamide compared with other Trp residues at both pH 7.5 and 1.5. The solvent-exposed Trp 82 is surprisingly found to be not quenched by acrylamide at pH 7.5. All the results are obtained using micromolar concentration of protein and without using any Trp-substituted mutant.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Deferasirox (DFX), as an oral chelator, is used for treatment of transfusional iron overload. In this study, we have investigated the effects of DFX as an iron chelator, on the function and structure of bovine liver catalase (BLC) by different spectroscopic methods of UV-visible, fluorescence, and circular dichroism (CD) at two temperatures of 25 and 37 °C. In vitro kinetic studies showed that DFX can inhibit the enzymatic activity in a competitive manner. KI value was calculated 39 nM according to the Lineweaver-Burk plot indicating a high rate of inhibition of the enzyme. Intrinsic fluorescence data showed that increasing the drug concentrations leads to a significant decrease in the intrinsic emission of the enzyme indicating a significant change in the three-dimensional environment around the chromophores of the enzyme structure. By analyzing the fluorescence quenching data, it was found that the BLC has two binding sites for DFX and the values of binding constant at 25 and 37 °C were calculated 1.7 × 10(7) and 3 × 10(7) M(-1), respectively. The static type of quenching mechanism is involved in the quenching of intrinsic emission of enzyme. The thermodynamic data suggest that hydrophobic interactions play a major role in the binding reaction. UV-vis spectroscopy results represented the changes in tryptophan (Trp) absorption and Soret band spectra, which indicated changes in Trp and heme group position caused by the drug binding. Also, CD data represented that high concentrations of DFX lead to a significant decreasing in the content of β-sheet and random coil accompanied an increasing in α-helical content of the protein. The molecular docking results indicate that docking may be an appropriate method for prediction and confirmation of experimental results and also useful for determining the binding mechanism of proteins and drugs. According to above results, it can be concluded that the DFX can chelate the Fe(III) on the enzyme active site leading to changes in the function and structure of catalase which can be considered as a side effect of this drug and consequently has an important role in hepatic complications and fibrosis.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: The G-protein coupled estrogen receptor 1 GPER/GPR30 is a transmembrane seven-helix (7TM) receptor involved in the growth and proliferation of breast cancer. Due to the absence of a crystal structure of GPER/GPR30, in this work, molecular modeling studies have been carried out to build a three-dimensional structure, which was subsequently refined by molecular dynamics (MD) simulations (up to 120 ns). Furthermore, we explored GPER/GPR30's molecular recognition properties by using reported agonist ligands (G1, estradiol (E2), tamoxifen, and fulvestrant) and the antagonist ligands (G15 and G36) in subsequent docking studies. Our results identified the E2 binding site on GPER/GPR30, as well as other receptor cavities for accepting large volume ligands, through GPER/GPR30 π-π, hydrophobic, and hydrogen bond interactions. Snapshots of the MD trajectory at 14 and 70 ns showed almost identical binding motifs for G1 and G15. It was also observed that C107 interacts with the acetyl oxygen of G1 (at 14 ns) and that at 70 ns the residue E275 interacts with the acetyl group and with the oxygen from the other agonist whereas the isopropyl group of G36 is oriented toward Met141, suggesting that both C107 and E275 could be involved in the protein activation. This contribution suggest that GPER1 has great structural changes which explain its great capacity to accept diverse ligands, and also, the same ligand could be recognized in different binding pose according to GPER structural conformations.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: FULL ACCESS AT THIS LINK: http://www.tandfonline.com/eprint/7wnM94fbShDcJIJT9SCu/full We have performed an amino acid composition (AAC) analysis of the complete sequences for 235 secondary transport proteins from Escherichia coli, which have functions in the uptake and export of organic and inorganic metabolites, efflux of drugs and in controlling membrane potential. This revealed the trends in content for specific amino acid types and for combinations of amino acids with similar physicochemical properties. In certain proteins or groups of proteins, the so-called spikes of high content for a specific amino acid type or combination of amino acids were identified and confirmed statistically, which in some cases could be directly related to function and ligand specificity. This was prevalent in proteins with a function of multidrug or metal ion efflux. Any tool that can help in identifying bacterial multidrug efflux proteins is important for a better understanding of this mechanism of antibiotic resistance. Phylogenetic analysis based on sequence alignments and comparison of sequences at the N- and C-terminal ends confirmed transporter Family classification. Locations of specific amino acid types in some of the proteins that have crystal structures (EmrE, LacY, AcrB) were also considered to help link amino acid content with protein function. Though there are limitations, this work has demonstrated that a basic analysis of AAC is a useful tool to use in combination with other computational and experimental methods for classifying and investigating function and ligand specificity in a large group of transport or other membrane proteins, including those that are molecular targets for development of new drugs.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Vinblastine (VLB) is one of vinca alkaloids with high cytotoxicity toward cancer cells approved for clinical use. However, because of drug resistance, toxicity, and other side effects caused from the use of VLB, new vinca alkaloids with higher cytotoxicity toward cancer cells and other good qualities need to develop. One strategy is to further study and better understand the essence why VLB possesses the high cytotoxicity toward cancer cells. In present work, by using molecular simulation, molecular docking, density functional calculation, and the crystal structure of α,β-tubulin complex, we find two modes labeled in catharanthine moiety (CM) and vindoline moiety (VM) modes of VLB bound with the interface of α,β-tubulin to probe the essence why VLB has the high cytotoxicity toward cancer cells. In the CM mode, nine key residues B-Ser178, B-Asp179, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, C-Lys336, and C-Lys352 from the α,β-tubulin complex are determined as the active sites for the interaction of VLB with α,β-tubulin. Some of them such as B-Ser178, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, and C-Lys336 are newly identified as the active sites in present work. The affinity between VLB and the active pocket within the interface of α,β-tubulin is -60.8 kJ mol(-1) in the CM mode. In the VM mode, that is a new mode established in present paper, nine similar key residues B-Lys176, B-Ser178, B-Asp179, B-Glu183, B-Tyr210, B-Asp226, C-Lys326, C-Asp327, and C-Lys336 from the α,β-tubulin complex are found as the active sites for the interaction with VLB. The difference is from one key residue C-Lys352 in the CM mode changed to the key residue B-Lys176 in the VM mode. The affinity between VLB and the active pocket within the interface of α,β-tubulin is -96.3 kJ mol(-1) in the VM mode. Based on the results obtained in present work, and because VLB looks like two faces, composed of CM and VM both to have similar polar active groups, to interact with the active sites, we suggest double-faces sticking mechanism for the binding of VLB to the interface of α,β-tubulin. The double-faces sticking mechanism can be used to qualitatively explain high cytotoxicity toward cancer cells of vinca alkaloids including vinblastine, vincristine, vindestine, and vinorelbine approved for clinical use and vinflunine still in a phase III clinical trial. Furthermore, this mechanism will be applied to develop novel vinca alkaloids with much higher cytotoxicity toward cancer cells.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Angiotensin-converting enzyme (ACE), a membrane-bound zinc metallopeptidase, catalyzes the formation of Angiotensin-II (AngII) and the deactivation of bradykinin in the renin-angiotensin-aldosterone and kallikrein-kinin systems. As a hydrolysis product of ACE, AngII is regarded as an inhibitor and displays stronger competitive inhibition in the C-domain than the N-domain of ACE. However, the AngII binding differences between the two domains and the mechanisms behind AngII dissociation from the C-domain are rarely explored. In this work, molecular docking, Molecular Mechanics/Poisson-Boltzmann Surface Area (MM-PBSA) calculation, and steered molecular dynamics (SMD) are applied to explore the structures and interactions in the binding or unbinding of AngII with the two domains of human somatic ACE. Calculated free energy values suggest that the C-domain-AngII complex is more stable than the N-domain-AngII complex, consistent with available experimental data. SMD simulation results imply that electrostatic interaction is dominant in the dissociation of AngII from the C-domain. Moreover, Gln106, Asp121, Glu123, and Tyr213 may be the key residues in the unbinding pathway of AngII. The simulation results in our work provide insights into the interactions between the two domains of ACE and its natural peptide inhibitor AngII at a molecular level. Moreover, the results provide theoretical clues for the design of new inhibitors.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract The guanine rich sequence specifically in DNA, telomeric DNA, is a potential target of anticancer drugs. In this work, a mononuclear Fe(III) complex containing two meloxicam ligands was synthesized as a G-quadruplex stabilizer. The interaction between the Fe(III) complex and G-quadruplex with sequence of 5'-G3(T2AG3)3-3' (HTG21) was investigated using spectroscopic methods, molecular modeling, and polymerase chain reaction (PCR) assays. The spectroscopic methods of UV-Vis, fluorescence, and circular dichroism showed that the metal complex can effectively induce and stabilize G-quadruplex structure in the G-rich 21-mer sequence. Also, the binding constant between the Fe(III) complex and G-quadruplex was measured by these methods and it was found to be 4.53(±0.30) ×10(5) M(-1)). The PCR stop assay indicated that the Fe(III) complex inhibits DNA amplification. The cell viability assay showed that the complex has significant antitumor activities against Hela cells. According to the UV-Vis results, the interaction of the Fe(III) complex with duplex DNA is an order of magnitude lower than G-quadruplex. Furthermore, the release of the complex incorporated in bovine serum albumin nanoparticles was also investigated in physiological conditions. The release of the complex followed a bi-phasic release patterns with high and low releasing rates at the first and second phases, respectively. Also, in order to obtain the binding mode of the Fe(III) complex with G-quadruplex, molecular modeling was performed. The molecular docking results showed that the Fe(III) complex was docked to the end-stacked of the G-quadruplex with a π-π interaction, created between the meloxicam ligand and the guanine bases of the G-quadruplex.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Aspartate-semialdehyde dehydrogenase (ASADH; EC 1.2.1.11) is a key enzyme in the biosynthesis of essential amino acids in prokaryotes and fungi, inhibition of ASADH leads to the development of novel anti-tubercular agents. In the present work, a combined structure and ligand based pharmacophore modeling, molecular docking and molecular dynamics approaches were employed to identify potent inhibitors of Mtb-ASADH. The structure based pharmacophore hypothesis consists of three hydrogen bond acceptor (HBA), two negatively ionizable (NI) and one positively ionizable (PI) centre while ligand based pharmacophore consists of additional one HBA and one hydrogen bond donor (HBD) features. The validated pharmacophore models were used to screen the chemical databases (ZINC and NCI). The screened hits were subjected to ADME and toxicity filters, and subsequently to the molecular docking analysis. Best docked twenty five compounds carry the characteristics of highly electronegative functional groups (-COOH and -NO2) on both sides and exhibited the H-bonding interactions with highly conserved residues Arg99, Arg249 and His256. For further validation of docking results, molecular dynamics simulation studies were carried out on two representative compounds NSC51108 and ZINC04203124. Both the compounds remain bound to the key active residues of Mtb-ASADH during the MD simulations. These identified hits can be further used for lead optimization and in the design more potent inhibitors against Mtb-ASADH.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract A detailed investigation on the interaction of two benzophenanthridine alkaloids, sanguinarine (SGR) and chelerythrine (CHL), with the double stranded (ds), heat denatured (hd) and single stranded (ss) DNA was performed by spectroscopy and calorimetry techniques. Binding to the three DNA conformations leads to quenching of fluorescence of SGR and enhancement in the fluorescence of CHL. The binding was cooperative for both of the alkaloids with all the three DNA conformations. The binding constant values of both alkaloids with the ds DNA were of the order of 10(6) M(-1); binding was weak with hd and much weaker to the ss DNA. The fluorescence emission of the alkaloid molecules bound to the double stranded and hd DNAs was quenched much less compared to those bound to the ss DNA based on competition with the anionic quencher KI. For both double stranded and heat denatured structures the emission of the bound alkaloid molecules was polarized significantly and strong energy transfer from the DNA bases to the alkaloid molecules occurred. The intercalation of SGR and CHL to ds, hd and ss DNA was proved from these fluorescence results. Calorimetric studies suggested that the binding to all DNA conformations was both enthalpy and entropy favored. Both the alkaloids preferred double helical regions for binding but SNG was a stronger binder than CHL to all the three DNA structures.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract A novel peroxidase-like artificial enzyme, named "caseoperoxidase", was biomimetically designed using a nano artificial amino acid apo-protein hydrophobic pocket. This four-component nano artificial enzyme containing heme-imidazole-β-casein-SDS exhibited high activity growth and kcat performance towards the native horseradish peroxidase (HRP) demonstrated by the steady state kinetics using UV-Vis spectrophotometry. The hydrophobicity and secondary structure of the caseoperoxidase were studied by ANS fluorescence and circular dichroism spectroscopy. Camel β-casein (Cβ-casein), with a flexible structure and exalted hydrophobicity, was selected as an appropriate apo-protein for the heme active site using a homology modeling method. Heme docking into the newly obtained Cβ-casein structure indicated one heme was mainly incorporated with Cβ-casein. The presence of a main electrostatic site for the active site in the Cβ-casein was also confirmed by experimental methods through Wyman binding potential and isothermal titration calorimetry. The existence of Cβ-casein protein in this biocatalyst lowered the suicide inactivation, and indicated that the obtained structure has a good protective role for the heme active-site. Additional further experiments confirmed the retention of caseoperoxidase structure and function as an artificial enzyme.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Cholix toxin from V. cholerae, is the third member of the diphtheria toxin group of mono-ADP-ribosyltransferase bacterial toxins. It shares structural and functional properties with P. aeruginosa exotoxin A and C. diphtheriae diphtheria toxin. Cholix toxin is an important model for the development of antivirulence approaches and therapeutics against these toxins from pathogenic bacteria. Herein, we have used the high-resolution X-ray structure of full-length cholix complexed with NAD(+) to describe the properties of the NAD(+)-binding pocket at the residue level, including the role of crystallographic water molecules in the NAD(+) substrate interaction. The full length apo cholix structure is used to describe the putative NAD(+) binding site(s) and to correlate biochemical with crystallographic data to study the stoichiometry and orientation of bound NAD(+) molecules. We quantitatively describe the NAD(+) substrate interactions on a residue basis for the main 22 pocket residues in cholixf, a glycerol and 5 contact water molecules as part of the recognition surface by the substrate according to the conditions of crystallization. In addition, the dynamic properties of an in silico version of the catalytic domain were investigated in order to understand the lack of electronic density for one of the main flexible loops (R-loop) in the pocket of X-ray complexes. Implications for a rational drug design approach for mART toxins are derived.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract In the present work, we have kinetically simulated two mitochondrial shuttles, malate-aspartate shuttle (used for transferring reducing equivalents) and citrate-pyruvate shuttle (used for transferring carbon skeletons). However, the functions of these shuttles are not limited to the points mentioned above, and they can be used in different arrangements to meet different cellular requirements. Both the shuttles are intricately associated with Krebs cycle through the metabolites involved. The study of this system of shuttles and Krebs cycle explores the response of the system in different metabolic environments. Here, we have simulated these subsets individually and then combined them to study the interactions among them and to bring out the dynamics of these pathways in focus. Four antiports and a pyruvate pump were modelled along with the metabolic reactions on both sides of the inner mitochondrial membrane. Michaelis-Menten approach was extended for deriving rate equations of every component of the system. Kinetic simulation was carried out using ordinary differential equation solver in GNU Octave. It was observed that all the components attained steady state, sooner or later, depending on the system conditions. Progress curves and phase plots were plotted to understand the steady state behaviour of the metabolites involved. A comparative analysis between experimental and simulated data show fair agreement thus validating the usefulness and applicability of the model.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: AbstractThe molecular architecture of protein-RNA interfaces are analysed using a non-redundant dataset of 152 protein-RNA complexes. We find that an average protein-RNA interface is smaller than an average protein-DNA interface but larger than an average protein-protein interface. Among the different classes of protein-RNA complexes, interfaces with tRNA are the largest, while the interfaces with the single-stranded RNA are the smallest. Significantly, RNA contributes more to the interface area than its partner protein. Moreover, unlike protein-protein interfaces where the side chain contributes less to the interface area compared to the main chain, the main chain and side chain contributions flipped in protein-RNA interfaces. We find that the protein surface in contact with the RNA in protein-RNA complexes is better packed than that in contact with the DNA in protein-DNA complexes, but loosely packed than that in contact with the protein in protein-protein complexes. Shape complementarity and electrostatic potential are the two major factors that determine the specificity of the protein-RNA interaction. We find that the H-bond density at the protein-RNA interfaces is similar with that of protein-DNA interfaces but higher than the protein-protein interfaces. Unlike protein-DNA interfaces where the deoxyribose has little role in intermolecular H-bonds, due to the presence of an oxygen atom at the 2? position, the ribose in RNA plays significant role in protein-RNA H-bonds. We find that besides H-bonds, salt-bridges and stacking interactions also play significant role in stabilizing protein-nucleic acids interfaces; however, their contribution at the protein-protein interfaces is insignificant.
    Journal of biomolecular Structure & Dynamics 01/2015;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Human β-defensin-3 (HβD-3) is an endogenous antimicrobial peptide with potent and broad killing activity against various microorganisms,thus, it is an attractive candidate for the development of novel peptide antibiotics, but its antimicrobial mechanism remains elusive. To characterize the mechanism, we used multi-microsecond coarse-grained simulations with the MARTINI force field. These simulations show HβD-3 peptides can form oligomers on the surface of bacterial membrane and make anionic lipids (POPG) clustered. Furthermore, two kinds of regions (one is composed of pure POPG lipids, the other is enriched in POPE lipids) are formed in the membrane; on the border of them, there are some obvious defects, which result in the membrane disruption. By contrast, the simulations also reveal that the contacts between the HβD-3 peptides and mammalian membrane are not stable. These results provide biophysical insights into HβD-3 selectivity and suggest a possible antimicrobial mechanism.
    Journal of biomolecular Structure & Dynamics 01/2015;