Molecular Biology and Evolution (MOL BIOL EVOL)

Publisher: Molecular Biology and Evolution Society; American Society of Naturalists; Society for the Study of Evolution, Oxford University Press (OUP)

Journal description

Molecular Biology and Evolution (MBE) is devoted to the interdisciplinary science between molecular biology and evolutionary biology. MBE emphasizes experimental papers, but theoretical papers are also published if they have a solid biological basis. Although this journal is primarily for original papers, review articles and book reviews are also published. MBE is an appropriate outlet for the examination of molecular evolutionary processes and patterns, and the testing of evolutionary hypotheses with molecular data. MBE is not an appropriate outlet for purely taxonomic treatments and the detailing of systematic issues. Published by the Society for Molecular Biology and Evolution.

Current impact factor: 9.11

Impact Factor Rankings

2015 Impact Factor Available summer 2016
2014 Impact Factor 9.105
2013 Impact Factor 14.308
2012 Impact Factor 10.353
2011 Impact Factor 5.55
2010 Impact Factor 5.51
2009 Impact Factor 9.872
2008 Impact Factor 7.28
2007 Impact Factor 6.438
2006 Impact Factor 6.726
2005 Impact Factor 6.233
2004 Impact Factor 6.355
2003 Impact Factor 6.05
2002 Impact Factor 5.271
2001 Impact Factor 5.357
2000 Impact Factor 5.298
1999 Impact Factor 4.983
1998 Impact Factor 5.291
1997 Impact Factor 5.249
1996 Impact Factor 5.969
1995 Impact Factor 5.399
1994 Impact Factor 5.024
1993 Impact Factor 3.902
1992 Impact Factor 3.737

Impact factor over time

Impact factor

Additional details

5-year impact 11.67
Cited half-life 7.10
Immediacy index 1.75
Eigenfactor 0.09
Article influence 4.44
Website Molecular Biology and Evolution website
Other titles Molecular biology and evolution, MBE
ISSN 0737-4038
OCLC 9364605
Material type Periodical, Internet resource
Document type Journal / Magazine / Newspaper, Internet Resource

Publisher details

Oxford University Press (OUP)

  • Pre-print
    • Author can archive a pre-print version
  • Post-print
    • Author cannot archive a post-print version
  • Restrictions
    • 12 months embargo
  • Conditions
    • Pre-print can only be posted prior to acceptance
    • Pre-print on pre-print servers
    • Pre-prints that are accepted will be required to select Oxford Open when accepted
    • Pre-print must be accompanied by set statement (see link) and state of article review
    • Pre-print must match current version under consideration
    • Pre-print must be ammended with a a link to published version
    • Post-print in Institutional repositories or Central repositories
    • Publisher's version/PDF cannot be used
    • Published source must be acknowledged
    • Must link to publisher version
    • Set phrase to accompany archived copy (see policy)
    • Eligible authors may deposit in OpenDepot
    • The publisher will deposit in PubMed Central on behalf of NIH authors
    • This policy is an exception to the default policies of 'Oxford University Press (OUP)'
  • Classification
    ​ yellow

Publications in this journal

  • [Show abstract] [Hide abstract]
    ABSTRACT: North American populations of Drosophila melanogaster derive from both European and African source populations, but despite their importance for genetic research, patterns of ancestry along their genomes are largely undocumented. Here, I infer geographic ancestry along genomes of the Drosophila Genetic Reference Panel (DGRP) and the D. melanogaster reference genome, which may have implications for reference alignment, association mapping, and population genomic studies in Drosophila. Overall, the proportion of African ancestry was estimated to be 20% for the DGRP and 9% for the reference genome. Combining my estimate of admixture timing with historical records, I provide the first estimate of natural generation time for this species (~15 generations per year). Ancestry levels were found to vary strikingly across the genome, with less African introgression on the X chromosome, in regions of high recombination, and at genes involved in specific processes (e.g. circadian rhythm). An important role for natural selection during the admixture process was further supported by evidence that many unlinked pairs of loci showed a deficiency of Africa-Europe allele combinations between them. Numerous epistatic fitness interactions may therefore exist between African and European genotypes, leading to ongoing selection against incompatible variants. By focusing on hubs in this network of fitness interactions, I identified a set of interacting loci that includes genes with roles in sensation and neuropeptide/hormone reception. These findings suggest that admixed D. melanogaster samples could become an important study system for the genetics of early-stage isolation between populations.
    Molecular Biology and Evolution 09/2015; DOI:10.1093/molbev/msv194
  • [Show abstract] [Hide abstract]
    ABSTRACT: In species with a heterogametic sex, population genetics theory predicts that DNA sequences on the X chromosome can evolve faster than comparable sequences on autosomes. Both neutral and non-neutral evolutionary processes can generate this pattern. Complex traits like gene expression are not predicted to have accelerated evolution by these theories, yet a “faster-X” pattern of gene expression divergence has recently been reported for both Drosophila and mammals. Here, we test the hypothesis that accelerated adaptive evolution of cis-regulatory sequences on the X chromosome is responsible for this pattern by comparing the relative contributions of cis- and trans-regulatory changes to patterns of faster-X expression divergence observed between strains and species of Drosophila with a range of divergence times. We find support for this hypothesis, especially among male-biased genes, when comparing different species. However, we also find evidence that trans-regulatory differences contribute to a faster-X pattern of expression divergence both within and between species. This contribution is surprising because trans-acting regulators of X-linked genes are generally assumed to be randomly distributed throughout the genome. We found, however, that X-linked transcription factors appear to preferentially regulate expression of X-linked genes, providing a potential mechanistic explanation for this result. The contribution of trans-regulatory variation to faster-X expression divergence was larger within than between species, suggesting it is more likely to result from neutral processes than positive selection. These data show how accelerated evolution of both coding and non-coding sequences on the X chromosome can lead to accelerated expression divergence on the X chromosome relative to autosomes.
    Molecular Biology and Evolution 06/2015; DOI:10.1093/molbev/msv135
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chromosomal rearrangements, which shuffle DNA across the genome, are an important source of divergence across taxa that can modify gene expression and function. Using a paired-end read approach with Illumina sequence data for archaic humans, I identify changes in genome structure that occurred recently in human evolution. Hundreds of rearrangements indicate genomic trafficking between the sex chromosomes and autosomes, raising the possibility of sex-specific changes. Additionally, genes adjacent to genome structure changes in Neanderthals are associated with testis-specific expression, consistent with evolutionary theory that new genes commonly form with expression in the testes. I identify one case of new-gene creation through transposition from the Y chromosome to chromosome 10 that combines the 5' end of the testis-specific gene Fank1 with previously untranscribed sequence. This new transcript experienced copy number expansion in archaic genomes, indicating rapid genomic change. Finally, loci containing genome structure changes show diminished rates of introgression from Neanderthals into modern humans, consistent with the hypothesis that rearrangements serve as barriers to gene flow during hybridization. Together, these results suggest that this previously unidentified source of genomic variation has important biological consequences in human evolution.
    Molecular Biology and Evolution 05/2015; DOI:10.1093/molbev/msv204
  • [Show abstract] [Hide abstract]
    ABSTRACT: Cellular Ca2+ homeostasis is tightly regulated and is pivotal to life. Inositol 1,4,5-trisphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) are the major ion channels that regulate Ca2+ release from intracellular stores. Although these channels have been extensively investigated in multicellular organisms, an appreciation of their evolution and the biology of orthologs in unicellular organisms is largely lacking. Extensive phylogenetic analyses reveal that the IP3R gene superfamily is ancient and diverged into two subfamilies, IP3R-A and IP3R-B/RyR, at the dawn of Opisthokonta. IP3R-B/RyR further diversified into IP3R-B and RyR at the stem of Filozoa. Subsequent evolution and speciation of Holozoa is associated with duplication of IP3R-A and RyR genes, and loss of IP3R-B in the vertebrate lineages. To gain insight into the properties of IP3R important for the challenges of multicellularity, the IP3R-A and IP3R-B family orthologs were cloned from Capsaspora owczarzaki, a close unicellular relative to Metazoa (designated as CO.IP3R-A and CO.IP3R-B). Both proteins were targeted to the endoplasmic reticulum. However, CO.IP3R-A, but strikingly not CO.IP3R-B, bound IP3, exhibited robust Ca2+ release activity and associated with mammalian IP3Rs. These data indicate strongly that CO.IP3R-A as an exemplar of ancestral IP3R-A orthologs forms bona fide IP3-gated channels. Notably, however, CO.IP3R-A appears not to be regulated by Ca2+, ATP or Protein kinase A-phosphorylation. Collectively, our findings explore the origin, conservation, and diversification of IP3R gene families and provide insight into the functionality of ancestral IP3Rs and the added specialization of these proteins in Metazoa.
    Molecular Biology and Evolution 04/2015; 32(9). DOI:10.1093/molbev/msv098
  • Molecular Biology and Evolution 04/2015;